RISK AUDIT

PB&J

CONSULTING

2222222222

o FIDESIUM o




. < FIDESIUM Security Cost
l

Executive Summary

Report Abstract
TOTAL Fidesium's automated risk assessment service was
1 2 Lowrisk requested to perform a risk posture audit on Lava
Jan 26, 2025 contracts

/100

Contract Link: https://sepolia.basescan.org/address/

{ 0xb45ael57bedf5eaec20fa0d24chl2f4e91aabdf55#code ]

Revised contract Link:
https://sepolia.basescan.org/address/

{ Ox135d77974524053586a9d38d156603F73275B99b]

Issue Summary

. 4 0 Issues 0 Issues 2 Issues . 2 Issues . 1 Issues

Caveats Test Approach
PBJ's codebase is generally well written, but does incur Fidesium performed both Whitebox and Blackbox
a handful of flaws. testing, as per the scope of the engagement, and

relied on automated security testing.

Methodology Severity Definitions

The assessment methodology covered a range of . :
The issue can cause large economic

Pha.ses and employe'd various tools, including but not Critical losses, large-scale data disorder or loss of
limited to the following: control of authority management.
. Mapping Conter'lt and Functionality of API The issue puts users' sensitive information
* Application Logic Flaws at risk or is likely to lead to catastrophic
e Access Handling financial implications.
e Authentication/Authorization Flaws
e Brute Force Attempt The issue puts a subset of users' sensitive
e Input Handling information at risk, reputation damage or

e Source Code Review moderate financial impact.

e Fuzzing of all input parameter

) The risk is relatively small and could not
e Dependency Analysis Y

be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.



. < FIDESIUM Security Cost
Risk Issues
Vulnerability Description Risk Probability = Status
Irrecoverable State Liquidity Pool depletion can cause an irrecoverable Critical

Centralization

Possible blocking due to
undiscovered errors

Reliance on call
Precision Loss

Gas Inefficiency: Compound
Interest calculated in loop

state, permanently bricking the protocol

The owner has significant modification rights over the
contracts and their state.

The rescueeTH function can be blocked if
undiscovered accounting bugs cause Active
totalPendingPrizes to deviate.

The contract relies on cai1.
The cotnract relies on division.

The contract uses a loop to compute compound
interest

Active



: < FIDESIUM Security Cost

:

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary: 17
No issues found in founding team The contracts are well written, and secure with only a

few minor issues..



. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Irrecoverable State

Vulnerability severity: Critical

Vulnerability probability:

Liquidity Pool depletion can cause an irrecoverable state, permanently bricking the protocol
LP tokens deplete geometrically: Round 1 — 50%, Round 2 — 25%, Round 3 — 12.5%

checkAndExecuteRug removes liquidity

(uint256 lavaRemoved, uint256 ethRemoved) = router.removelLiquidityETH(
address(this),
1pToRemove,
9,
9,
address(this),
block.timestamp + 300

)5

However, refillliquidity relies on IUniswapV2Pair(pair).sync();. Sync is defined within uniswap as:

function sync() external lock ({
_update (
IERC20 (token0) .balanceOf (address (this)),
IERC20 (tokenl) .balanceOf (address (this)),
reservel,

reservel

This correctly refills the reserves but does not mint new Iptokens. Eventually, IpBalance will reach 0, and with no
way to refresh the pool, the contract will permanently brick.

checkAndExecuteRug() requires 1pBalance > @ - when LP = 0, function reverts
Recommendations:

1. Primary fix: Modify refillLiquidity() to call router.addLiquidityETH() instead of sync()

2. Emergency recovery: Modify addLiquidity() to remove the require(!tradingEnabled) check, OR add a new
emergencyAddLiquidity() function that can only be called when LP balance is critically low

3. Critical: Implement ETH retention mechanism - currently contract has no ETH to add liquidity (all ETH goes
to winners)

Action Taken:

Remediated, The event is 60-70 rounds in the future, however a manualAddLiquidity was added to allow for
resolution.



: < FIDESIUM Security Cost

:

Vulnerabilities

Current scan highs

During this scan no high security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.



. < FIDESIUM Security Cost

!

Vulnerabilities

Centralization

Vulnerability severity:

Vulnerability probability:

The owner has significant modification rights over the contracts and their state.
Recommendations:

Ensure owner is a well managed multisig

Actions Taken:

Owner will be a well managed multisig

Possible blocking due to undiscovered errors

Vulnerability severity:

Vulnerability probability:

The rescueETH function can be blocked if undiscovered accounting bugs cause totalPendingPrizes to deviate.
Recommendations:

Implement an emergency, timelocked, owner only rescue function which bypasses accounting checks



. < FIDESIUM Security Cost
l

Vulnerabilities

Precision Loss

Vulnerability severity:
Vulnerability probability:

The conract relies on division.

currentFloor = (currentFloor * (10000 + rate)) / 10000;

Over thousands of iterations this will slowly drift from actual values due to truncation

Recommendations:

Use a mathematical compound formula instead of iterative multiplication, or track fractional parts separately.
Actions Taken:

This precision loss will be negligible under real conditions

Reliance on call

Vulnerability severity:

Vulnerability probability:

The contract relies on call.

Low level calls will copy any amounts of bytes to local memory, allowing for gas griefing via a returnbomb
Recommendations:

Use nomad-xyz/excessivelysafecall instead of call

Actions Taken:

There are no concrete attack vecotrs and little discovered incentive for a caller to, in effect, grief themselves. That
said the exploit exists in theory



. < FIDESIUM Security Cost
l

Vulnerabilities

Gas Inefficiency: Compound Interest calculated in loop

Vulnerability severity:
Vulnerability probability:

The contract uses a loop to compute compound interest

for (uint256 i1 = 0; i < periodsToProcess; i++) {

uint256 period = lastUpdatePeriod + 1 + i;
uint256 rate = getRateForPeriod (period);
currentFloor = (currentFloor * (10000 + rate)) / 10000;

The gas cost will be linear to the number of iterations, at cap of 500, this would result in ~10000 gas per iteration

Recommendations:

Apply the compound interest formula for a static gas cost reduction of ~98% at cap of 500. Since 105007500 will
overflow uint 256, this will require careful SafeMath-style computation with chunking (e.g. 50 periods at a time).
It is also worth noting that while correct, the result will differ from sequential rounding, and will require testing.



. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.



