RISK AUDIT

Bananadone

o FIDESIUM o

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Medium risk

November 29, 2025

Issue Summary
. 1 Issues

Caveats

1 Issues

Banana Protocol's codebase is well written, but does
incur a handful of high value flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

e Mapping Content and Functionality of API
e Application Logic Flaws

e Access Handling

¢ Authentication/Authorization Flaws

¢ Brute Force Attempt

e Input Handling

e Source Code Review

e Fuzzing of all input parameter

e Dependency Analysis

3 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on Banana
Protocol contracts

Repository Link:
https://github.com/memeworldorg/contracts

Initial Commit Hash:

[blafcac6ae9a21f2d36c3c98c470370351ae9fbeJ

1 Issues

. 1 Issues

Test Approach

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.

. < FIDESIUM Security Cost

.

Risk Issues

Vunerability Description Risk Probability Status

Multiple functions do not validate PDA key equality before

Missing PDA key equality checks use Critical Active
Reentrancy s!gn_W|thdraw_proposaI modifies state before checking Active
signer
Unsafe cast/truncation Multiple functions do not check bounds on uint conversion Active
Unsafe unwrap Multiple functions use unsafe unwraps Active
Missing Slice validation Serialization without slice length verification Active
Unbounded Vector growth Possible DoS and Resource exhaustion Active
Lamport leakage in PDA Lamport leakage in PDA Creation Active

Creation

: < FIDESIUM

Security Cost

!

Risk Overview

Team Risk

Low risk: 1

No issues found in founding team

Whale Concentration

Risk summary: N/A

As this is a Github assessment, whale risks have not
been assessed

Liquidity
Risk summary: N/A

As this is a Github assessment, liquidity risks have not
been assessed

Smart Contract Risks

Risk summary:

The contracts are mostly well written, but have a
handful of flaws that should to be carefuly managed.

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Missing PDA key equality checks

Vulnerability severity: Critical
Vulnerability probability:
Multiple functions do not validate PDA key equality before use

The program derives PDAs but in many places does not assert that the account passed by the client equals the
derived PDA. This lets a malicious client pass an arbitrary account (attacker-controlled) and get the program to
write sensitive state or receive lamports intended for the PDA.

The following is a list of vulnerable functions

e create_withdraw_proposal with PDA: withdraw_proposal_address

e init_withdraw_counter with PDA: withdraw_counter_address

e init competition_counter with PDA: competition_counter_address
e init_config with PDA: config_account

e create_bet with PDA: treasury ref account

e create_bet with PDA: pool account

e create_bet with PDA: outcome_range account

Recommendations:

Add the following checks directly after deriving the PDAs (modify the derived name to fit the real derived name)

if withdraw proposal account.key != &withdraw proposal address {
return Err (InvalidWithdrawProposal.into());
}
if withdraw_proposal account.owner != program id {
return Err (InvalidOwner.into()) ;
}
if withdraw_proposal account.data len() < (EXPECTED WITHDRAW PROPOSAL LEN) {

return Err (InvalidAccountSize.into());

. < FIDESIUM Security Cost

.

Vulnerabilities

Reentrancy

Vulnerability severity:
Vulnerability probability:

sign_withdraw_proposal modifies state before checking signer

fn sign withdraw proposal(...) {

proposal.signers.push (authority.key.to bytes());

proposal.signatures collected += 1;

if already signed ({
return Err (AlreadySigned.into()) ;

Recommendations:

Move all mutation after signer checks

. < FIDESIUM Security Cost

!

Vulnerabilities

Unsafe cast/truncatio

Vulnerability severity:
Vulnerability probability:
distribute_payouts does not check bounds on uint conversion

If the division result exceeds u64::MAX, the cast truncates silently. This may produce incorrect payout calculations
or cause downstream logic to behave in unsafe ways. In finances, any silent truncation is unacceptable.

let winner bet index: u64 = outcome range state
.outcome result price
.checked div(pool config.volatility as ul28)

.0k or (ArithmeticError)? as u64;

Recommendations:

Use ub4::try_from(...) and return a meaningful program error if the value is too large

Unsafe unwrap

Vulnerability severity:

Vulnerability probability:

Multiple functions use unsafe unwraps

try_into() can fail; unwrap() will panic and abort the program with a generic panic code.
Recommendations:

Replace unwrap() with .try_into().map_err(]|_| ArithmeticError)? or a dedicated error explaining overflow/invalid
allocation size.

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Slice validation

Vulnerability severity:
Vulnerability probability:
Serialization without slice length verification

Solana runtime does not enforce size correctness. By creating a smaller than expected account and passing this
in, you expose the program to DoS.

pool config.serialize (&mut &mut pool account.data.borrow mut () [..55])?;

pool bets count.serialize(&mut &mut pool account.data.borrow mut () [55..59])72;

let record offset = (bets checked as usize * 26) + 59;

let record slice = &mut pool account.data.borrow mut () [record offset .. record offset+26];

try_into() can fail; unwrap() will panic and abort the program with a generic panic code.
Recommendations:

Enforce PDA address correctness, enforce account ownership, and assert data length

let (expected pda, bump) =
Pubkey::find program address (&[SEED, &pool id.to le bytes()], program id);

if pool account.key != &expected pda {
msg! ("PDA mismatch") ;

return Err (ProgramError::InvalidArgument) ;

if pool account.owner != program id {
msg! ("Invalid owner for pool account");

return Err (ProgramError::IllegalOwner) ;

let data = pool account.data.borrow();

let expected len POOL_ STATE LEN;

if data.len() < expected len {
msg! ("Account is too small: {} < {}", data.len(), expected len);

return Err (ProgramError::InvalidAccountData);

. < FIDESIUM Security Cost

!

Vulnerabilities

Unbounded Vector growth

Vulnerability severity:
Vulnerability probability:
Possible DoS and Resource exhaustion

Multiple vectors (bets, outcomes_ranges, signers) grow without bounds.

proposal.signers.push (authority.key.to bytes());

Recommendations:

Enforce maximum vector size limits and validation

. < FIDESIUM Security Cost

.

Vulnerabilities Info

Lamport leakage in PDA Creation

Vulnerability severity: Info
Vulnerability probability:

Lamport leakage in PDA Creation

let value: u64 = **pda.try borrow lamports()?;
if pda.owner == &ID && value != 0 {
invoke signed(
&system instruction::transfer (&pda address, payer.key, value),
&[pda.clone (), payer.clone()],
&[&[seeds, &[bump]lll],

If the PDA already exists with lamports, they're transferred to the payer, potentially causing accounting
inconsistencies.

Recommendations:

Implement idempotent PDA cration - if it already exists, succeed silently

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

