RISK AUDIT

PB&J

CONSULTING

2222222222

o FIDESIUM o

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Low risk

June 26, 2025

Issue Summary
. 0 Issues

Caveats

4 Issues

PBJ's codebase is generally well written, but does incur

a handful of flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

7 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on
TriviTourney contracts

Repository Link: https://github.com/PBJ]-
JWeb3/vesting-contracts

Initial Commit Hash:

[9244b56279a9d3ao 9ef6elTbaacc29382 60f4c51}

0 Issues

. 1 Issues

Test Approach

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.

reads and SStores in loop

writes in a loop.

: 4 FIDESIUM Security Cost
Risk Issues
Vulnerability Description Risk Probability = Status
Missing Oracle Validation 3;c|nir|§r|<etp1ace does not check if the oracle's data is Active
Missing Oracle Validation: Stale = otcmarketplace does not check if the oracle's data is Active
Data stale and _expiry is in the future.
Centralization The owner has S|gn|f|ca_nt modification rights over Active
the contracts and their state.
One step ownership transfer Cor_ltra_cts rely on ownable to manage ownership, Active
which is not secure.
Missing Access Control CoreVesting.batchReleaseTokens does not check if the Active
9 caller is the owner.
Bespoke payment splitting corevesting implements bespoke payment splitting Active
calculation logic.
Logic Error: Hardcoded OTCMarketplace.purchaseoTcbeal hardcodes the decimals Active
decimals to 1eis.
Logic Error: Hardcoded array CoreVesting.batchCreateVesting hardcodes fees to first Active
indices on fee distribution cliffTime
Reliance on Block Timestam OTCMarketplace relies on block.timestamp, which can be
P manipulated by miners.
Rounding error: Division in CoreVesting.batchCreatevesting divides by token Active
token amount calculations amounts.
Gas Ineffiency: Redundant CoreVesting.releaseTokens has inefficient reads and Active

: < FIDESIUM Security Cost

!

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary:
No issues found in founding team The contracts are well written, and secure with only a

few minor issues..

: < FIDESIUM Security Cost

:

Vulnerabilities Critical

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Oracle Validation

Vulnerability severity:
Vulnerability probability:
OTCMarketplace does not check if the oracle's data is valid.

A malicious oracle can manipulate the price of the token, and the contract will not be able to detect it, leading to
unexpected results, economic attacks, or protocol failure.

Recommendations:

Implement a validation check for the oracle's data.
Implement a timelock for the oracle's data.
Implement a fallback mechanism for the oracle's data.
Implement a multi oracle system with aggregation
Implement circuit breakers and price bounds

Rely on TWAP oracles for price stability

. < FIDESIUM Security Cost

.

Vulnerabilities

Missing Oracle Validation: Stale Data

Vulnerability severity:
Vulnerability probability:
OTCMarketplace does not check if the oracle's data is stale and expiry is in the future.
Recommendations:
Implement a validation check for the oracle's data.
require (block.timestamp <= expiry, "Oracle price data has expired");

require(_expiry <= block.timestamp + MIN PRICE AGE, "Oracle timestamp too far in future");

require(expiry >= block.timestamp - MAX PRICE AGE, "Oracle price data too old");

Additionally implement nonce based validation to prevent replay attacks.

. < FIDESIUM Security Cost

!

Vulnerabilities

Centralization

Vulnerability severity:

Vulnerability probability:

The owner has significant modification rights over the contracts and their state.
Recommendations:

Ensure that these roles are tied to well maintained Multisig wallets, and consider implementing a timelock.

One Step Ownership Transfer

Vulnerability severity:
Vulnerability probability:
Contracts rely on ownable to manage ownership, which is not secure.

The ownable pattern is vulnerable to a one step ownership transfer. This exposes these contracts to accidental
ownership transfer to malicious or invalid wallets.

Recommendations:

Implement Ownable2Step to drive a two step ownership transfer. This will require applying Upgradeable
independently.

Missing Access Control

Vulnerability severity:

Vulnerability probability:

CoreVesting.batchReleaseTokens does not check if the caller is the owner.
Recommendations:

Ensure that the caller is the owner before releasing tokens.

. < FIDESIUM Security Cost

.

Vulnerabilities

Bespoke payment splitting calculation

Vulnerability severity:

Vulnerability probability:

CoreVesting implements bespoke payment splitting logic.
This can introduce bugs, and is not recommended.
Recommendations:

Use a more standard payment splitting logic, such as OpenZeppelin's PaymentSplitter.

. < FIDESIUM Security Cost

!

Vulnerabilities

Logic Error: Hardcoded decimals

Vulnerability severity:

Vulnerability probability:

OTCMarketplace.purchaseOTCDeal hardcodes the decimals to 1e18.

This will be incorrect for tokens with different decimals, such as USDC.
Recommendations:

Use the decimals function to get the decimals of the token.

uint8 tokenDecimals = IERC20 (details.projectToken) .decimals();

uint256 totalPrice = details.totalTokens * currentPrice / (10 ** tokenDecimals) ;

Logic Error: Hardcoded array indices on fee distribution

Vulnerability severity:
Vulnerability probability:

CoreVesting.batchCreateVesting hardcodes fees to first cliffTime

_createVesting(
escrowWallet,
params.projectToken,
feeAmount,
params.releaselnterval,
params.numReleases,
params.cliffTimes[0],
params.cliffPercents[0],
params.projectWallet,
false,

params.tgeAmount

Recommendations:

Aggregate wallet fees inside the loop based on params.cliffTimes[i]

Reliance on Block Timestamp

Vulnerability severity:

Vulnerability probability:

OTCMarketplace relies on block.timestamp, which can be manipulated by miners.
Recommendations:

Use a more secure timestamp source, such as a trusted oracle, or at least implement a compound time
computation based on block.timestamp and block.number and block.timestamp

. < FIDESIUM Security Cost

.

Vulnerabilities Low

Rounding error: Division in token amount calculations

Vulnerability severity: Low

Vulnerability probability:

CoreVesting.batchCreateVesting divides by token amounts.
Recommendations:

Ensure that the token remainders are handled correctly.

uint256 tokensPerReceiver = params.totalTokens / params.receivers.length;
uint256 remainder = params.totalTokens % params.receivers.length;
if (remainder > 0) {

// Handle the remainder

. < FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Ineffiency: Redundant reads and SStores in loop

Vulnerability severity: Info
Vulnerability probability: Info

CoreVesting.releaseTokens has inefficient reads and writes in a loop.

for (uint256 1 = 0; i < vesting.cliffTimes.length; i++) {
if (block.timestamp >= vesting.cliffTimes[i] && vesting.cliffPercents[i] > 0) {
uint256 cliffTokens = (vesting.totalTokens * vesting.cliffPercents[i]) / 100;
tokensToRelease += cliffTokens;

vesting.cliffPercents[i] = 0;

This recomputes a static result and writes an array.
Recommendations:

Precompute vesting.cliffTokens, then

struct Vesting {
uint256 cliffTime;
uint256 cliffTokens;
bool cliffReleased;
}
if (!vesting.cliffReleased && block.timestamp >= vesting.cliffTime) {
tokensToRelease += vesting.cliffTokens;

vesting.cliffReleased = true;

This implementation will save ~90% gas

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

