RISK AUDIT

PB&J

CONSULTING

2222222222

o FIDESIUM o

' 4 FIDESIUM Security Cost

!

Executive Summary

Report Abstract
TOTAL Fidesium's automated risk assessment service was
Low risk requested to perform a risk posture audit on

June 25, 2025 TriviTournament contracts

Repository Link: https://github.com/PBJ-JWeb3/Trivi-

TOTAL Contracts

Low risk Initial Commit Hash:

June 11, 2025

oTAL [896ffabc8fdlb715d599cc5ccfl1£3d9640£0256e]
Low risk

June 09, 2025
TOTAL

Low risk

June 02, 2025

Issue Summary
Critical High Medium Low Info
0 Issues 2 0 Issues 3 1 Issues 2 1 Issues 4 1 Issues

Caveats Test Approach

PBJ's codebase is generally well written, but does incur Fidesium performed both Whitebox and Blackbox
a handful of flaws. testing, as per the scope of the engagement, and
relied on automated security testing.

Methodology Severity Definitions

The assessment methodology covered a range of

. . . The issue can cause large economic
phases and employed various tools, including but not d

Source Code Review moderate financial impact.

Fuzzing of all input parameter

. The risk is relatively small and could not
Dependency Analysis y

Low be exploited on a recurring basis, or is
low-impact to the client's business.

-1 - Critical losses, large-scale data disorder or loss of
limited to the following: control of authority management.
. Mapping Contel_"lt and Functionality of API The issue puts users' sensitive information
e Application Logic Flaws at risk or is likely to lead to catastrophic
e Access Handling financial implications.
e Authentication/Authorization Flaws
 Brute Force Attempt The issue puts a subset of users' sensitive
« Input Handling information at risk, reputation damage or
[]
[]
[]

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.

: < FIDESIUM

Security

Cost

.

Risk Issues

<

Vulnerability

Data Corruption: Storage
Slot Collision

DoS: Unbounded Loop

One step ownership
transfer

Centralization

Missing bounds validation

State inconsistency: Partial
Refund with cleanup

Gas Vulnerability:
Permanent Storage Bloat

Gas Vulnerability: Loop
Based Array Manipulation

Gas Inefficiency: Repeated
storage reads

Gas Inefficiency: String
Comparison as Existence
Check

Gas Inefficiency: String to
Byte conversion

Gas Inefficiency: High write

frequency storage

Gas Inefficiency:
Redundant storage of
lookup key

Gas Inefficiency:
Redundant SSTORE

Description Risk

The TriviTournament contract nests a mapping in a
struct, which can lead to storage slot collision.

The TriviTournament.cancelTournament function iterates
without a gas limit, and can be used to DOS the
contract.

The TriviTournament contract relies on ownable to manage
ownership, which is not secure.

The backendservice has significant modification rights
over the contracts and their state.

The enterTournament does not validate against maxpiayers.

The TriviTournament contract does not verify refund
completion before cleanup.

The Ttrivitournament contract uses a mapping to store
the tournaments.

The TtriviTournament.leaveTournament UsesS a loop to
manipulate an array.

The TriviTournament contract reads the tournament variable
repeatedly.

The TriviTournament contract uses a string comparison to
check for existence.

The TriviTournament contract converts the tournamentid
string to a byte array.

The TtriviTournament.Tournament Struct has fields with high
write frequency.

The TriviTournament contract stores the tournamentId
string in the Tournament struct.

The TriviTournament.createTournament function contains
multiple SSTOREs.

Probability = Status

Active

Active

Active

Active

Active

Active

: < FIDESIUM Security Cost

:

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary: 2% 15
No issues found in founding team The contracts are well written, and secure with only a

few minor issues..

: < FIDESIUM Security Cost

:

Vulnerabilities Critical

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.

. < FIDESIUM Security Cost

!

Vulnerabilities

Data Corruption: Storage Slot Collision

Vulnerability severity:
Vulnerability probability:
The TriviTournament contract nests a mapping in a struct, which can lead to storage slot collision.

Nested Mappings and dynamic arrays in a struct do not use the struct's slot, instead they calculate the slot based
on the hash of the struct and the mapping/array's key. If an attacker crafts a second tournament id that collides
with the first tournament id, the second tournament will overwrite the first tournament's data. This can lead to
manipulation, DoS, and, in extreme cases, protocol failure

Recommendations:
Separate the mapping and array from the struct, and use a different slot for the mapping.

mapping(string => mapping(address => bool)) public tournamentParticipants;

mapping(string => address[]) public tournamentPlayers;

Action Taken:

Resolved at commit: 896ffabc8fd1b715d599cc5ccf1f3do640f0256e by removing the nested mapping and array from
the struct.

. < FIDESIUM Security Cost
l

DoS: Unbounded Loop

Vulnerability severity:
Vulnerability probability:

The TriviTournament.cancelTournament function iterates without a gas limit, and can be used to DOS the contract.
The function iterates over the tournaments array, and for each tournament, it iterates over the players array. If
the players array is large, the function will run out of gas and revert. This can be used to DOS the contract, and
prevent users from cancelling tournaments.

Recommendations:

e Add a gas limit to the function.
e Implement a pull over push strategy for the players array.

mapping (string => mapping (address => uint256)) public refunds;
function cancelTournament (string memory tournamentId) external {

for (uint256 i1 = 0; i < tournament.players.length; i++) {
refunds|[tournamentId] [tournament.players[i]] = tournament.entryFee;
}

tournament.isActive = false;

function claimRefund(string memory tournamentId) external nonReentrant ({
uint256 refundAmount = refunds[tournamentId] [msg.sender];
require (refundAmount > 0, "No refund available");
refunds [tournamentId] [msg.sender] = 0;

triviToken.safeTransfer (msg.sender, refundAmount) ;

Action Taken:

Resolved at commit: 896ffabc8fd1b715d599cc5ccf1f3d9640f0256e by batching the refunds and allowing backend to
disperse refunds in batches to prevent DoS.

. < FIDESIUM Security Cost

!

Vulnerabilities

One Step Ownership Transfer

Vulnerability severity:
Vulnerability probability:
The TriviTournament contract relies on Ownable to manage ownership, which is not secure.

The ownable pattern is vulnerable to a one step ownership transfer. This exposes these contracts to accidental
ownership transfer to malicious or invalid wallets.

Recommendations:

Implement Ownable2Step to drive a two step ownership transfer. This will require applying Upgradeable
independently.

Centralization

Vulnerability severity:

Vulnerability probability:

The backendService has significant modification rights over the contracts and their state.
Recommendations:

Ensure that these roles are tied to well maintained Multisig wallets, and consider implementing a timelock.
Action Taken:

Acknowledged by team who will ensure all multisig wallets are well maintained.

Missing bounds validation

Vulnerability severity:

Vulnerability probability:

The enterTournament does not validate against maxPlayers.
Recommendations:

Validate the maxPlayers parameter.

Action Taken:

Resolved at commit: 896ffabc8fd1lb715d599cc5ccf1f3d9640f0256e by adding a check for maxPlayers.

. < FIDESIUM Security Cost

!

Vulnerabilities Low

State inconsistency: Partial Refund with cleanup

Vulnerability severity: Low

Vulnerability probability: Low

The TriviTournament contract does not verify refund completion before cleanup.

The partial batched refunds can lead to state inconsistency if the backend does not complete the refunds.
Recommendations:

Implement a check for refund completion before cleanup.

mapping(string => uint256) public totalRefundsDispersed;
mapping(string => uint256) public totalRefundsRequired;

function cancelTournament(string memory tournamentId)
external
onlyBackendService
tournamentExistsCheck(tournamentId)

nonReentrant
Tournament storage tournament = tournaments[tournamentId];

require(tournament.isActive, "Tournament is not active");

require(!tournament.isCompleted, "Tournament is already completed");

tournament.isActive = false;

tournamentCancelled[tournamentId] = true;

totalRefundsRequired[tournamentId] = tournament.playerCount;

totalRefundsDispersed[tournamentId] = 0;

emit TournamentCancelled(tournamentId);

if (tournamentCancelled[tournamentId]) {
require(
totalRefundsDispersed[tournamentId] == totalRefundsRequired[tournamentId],

"All refunds must be dispersed before cleanup"

)s

. < FIDESIUM Security Cost

!

Gas Vulnerability: Loop Based Array Manipulation

Vulnerability severity: Low
Vulnerability probability: Low
The TriviTournament.leaveTournament uses a loop to manipulate an array.

This can lead to out of gas errors, and can be used to DOS or grief the contract via array sybilling in extreme
cases.

Recommendations:
Track player indices and counts
mapping (string => mapping(address => uint256)) public playerIndex;

mapping (string => uint256) public actualPlayerCount;

function enterTournament (string memory tournamentId) external ... {

uint256 index = tournamentPlayers[tournamentId].length;
playerIndex[tournamentId] [msg.sender] = index + 1;
tournamentParticipants|[tournamentId] [msg.sender] = true;

tournamentPlayers[tournamentId] .push (msg.sender) ;
tournament.playerCount++;
actualPlayerCount [tournamentId]++;

tournament.totalPrizePool += tournament.entryFee;

function leaveTournament (string memory tournamentId) external ... {

uint256 index = playerIndex[tournamentId] [msg.sender];

require (index > 0, "Player not in tournament");
index = index - 1;
address|[] storage players = tournamentPlayers[tournamentId];

uint256 lastIndex players.length - 1;

if (index != lastIndex) {
address lastPlayer = players[lastIndex];
players[index] = lastPlayer;
playerIndex|[tournamentId] [lastPlayer] = index + 1;

}

players.pop () ;

delete playerIndex[tournamentId] [msg.sender];

For extermely large player counts consider using a Merkle Tree
Action Taken:

Resolved at Commit: 3f77daadpaf97298a8c8f55acd4ec3ad42f0624dc9

: < FIDESIUM Security Cost

:

Gas Vulnerability: Permanent Storage Bloat

Vulnerability severity: Low
Vulnerability probability: Low
The TriviTournament contract uses a mapping to store the tournaments.

This can lead to permanent storage bloat, and can be used to DOS or grief the contract via storage exhaustion in
extreme cases.

Recommendations:

e Implement tournament cleanup
e Use incremental tournament ids
e For large player counts, use merkle trees.

Action Taken:

Resolved at commit: 896ffabc8fd1b715d599cc5ccflf3do640f0256e€.

. < FIDESIUM Security Cost

.

Vulnerabilities Info

Gas Inefficiency: Repeated storage reads

Vulnerability severity: Info

Vulnerability probability: Info

The TriviTournament contract reads the tournament variable repeatedly.
Recommendations:

Cache the tournament reference.

Tournament storage tournament = tournaments[tournamentId];

Action Taken:

Resolved at commit: 896ffabc8fd1b715d599cc5ccf1f3d9640f0256e by caching the tournament reference.

Gas Inefficiency: String Comparison as Existence Check

Vulnerability severity: Info

Vulnerability probability: Info

The TriviTournament contract uses a string comparison to check for existence.
bytes(tournamentId).length > 0 is gas intensive.

Recommendations:

Use a separate existence mapping.

Action Taken:

Resolved at commit: 896ffabc8fd1b715d599cc5ccf13d9640f0256e by using a separate existence mapping.

. < FIDESIUM Security Cost
l

Gas Inefficiency: String to Byte conversion

Vulnerability severity: Info
Vulnerability probability: Info

The TriviTournament contract converts the tournamentId string to a byte array.

require(bytes(tournamentId).length > @, "Tournament ID cannot be empty");

This is gas intensive, and validates length on every function call
Recommendations:

Convert tournamentId to bytes32

mapping (bytes32 => Tournament) public tournaments;

mapping (string => bytes32) public tournamentIdToHash;

bytes32 tournamentHash = keccak256 (abi.encodePacked (tournamentId)) ;

require (!tournamentExists[tournamentHash], "Tournament already exists");

Action Taken:

Resolved at commit: 896ffabc8fd1b715d599cc5ccf1f3d9640f0256e by converting the tournamentId to a bytes32.

Gas Inefficiency: High write frequency storage

Vulnerability severity: Info

Vulnerability probability: Info

The TriviTournament.Tournament struct has fields with high write frequency.

These fields are written to frequently, and can lead to high gas costs. totalPrizePool and playerCount.
Recommendations:

Remove these fields from the struct. The gas savings on writes far outweigh the gas savings on
computation/reads. You could also cache them on tournament completion, e.g.:

mapping (string => uint256) public completedTournamentPrize;

Ensure that all fields in the struct are packed correctly to make use of slot sizes (32 bytes)

. < FIDESIUM Security Cost

.

Gas Inefficiency: Redundant storage of lookup key

Vulnerability severity: Info

Vulnerability probability: Info

The TriviTournament contract stores the tournamentId string in the Tournament struct.
Given this also acts as the mapping lookup key, the storage is redundant
Recommendations:

Remove the tournamentId string from the Tournament struct.

Gas Inefficiency: Redundant SSTORE

Vulnerability severity: Info
Vulnerability probability: Info

The TriviTournament.createTournament function contains multiple SSTOREs.

Tournament storage tournament = tournaments|[tournamentId];
tournament.tournamentId = tournamentId;
tournament.entryFee = entryFee;

tournament.totalPrizePool = 0;

tournament.playerCount = 0;

tournament.maxPlayers = maxPlayers;
tournament.isActive = true;
tournament.isCompleted = false;
tournamentExists[tournamentId] = true;

This is gas inefficient and will cost £45000 gas
Recommendations:

As a minimal improvement, pack the struct and combine the SSTOREs into a single SSTORE.

tournaments [tournamentId] = Tournament ({
entryFee: entryFee,
totalPrizePool: O,
playerCount: 0,
maxPlayers: maxPlayers,
winnerPayout: 0,
treasuryPayout: 0,
leaderboardPayout: 0,
winner: address(0),
isActive: true,
isCompleted: false

1)

tournamentExists[tournamentId] = true;

Alternatively, consider memory first assembly optimizations with mstore and sstore, or even lazy initialization
deferring non essential fields

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

