RISK AUDIT

é\J NOVEL LABS

o FIDESIUM o«

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

7 Low risk
April 10, 2025

Issue Summary
. 0 Issues

Caveats

1 Issues

Novel Lab's codebase is well written, but does incur a
handful of high value flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

1 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on Novel
Labss contracts

Repository Link:

https://github.com/mutantcartel/mutant-hound-
contracts.git

Initial Commit Hash:

[8860b38fldabl6fcddb472eldf2ebe’/b0ff2alel]

. 1 Issues

Test Approach

. 0 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.

: < FIDESIUM Security Cost

:

Risk Issues

Vunerability Description Risk Probability = Status

The FusedMinterUpgradable relies on erp-712 without Signature

erp-712 signature replay o Active
expiration or nonces

Addresses presumed to The FusediinterUpgradable.constructor function assumes multiple Active

be contracts addresses are contracts

Missing null signature The FusedMinterUpgradable. validateSigner function does not validate Active

validation against null signatures

: < FIDESIUM

Security Cost

!

Risk Overview

Team Risk

Low risk: 1

No issues found in founding team

Whale Concentration

Risk summary: N/A

As this is a Github assessment, whale risks have not
been assessed

Liquidity
Risk summary: N/A

As this is a Github assessment, liquidity risks have not
been assessed

Smart Contract Risks

Risk summary: 9

The contracts are mostly well written, but have a
handful of flaws that should to be carefuly managed.

: < FIDESIUM Security Cost

:

Vulnerabilities Critical

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.

. < FIDESIUM Security Cost

!

Vulnerabilities

EIP-712 signature replay

Vulnerability severity:

Vulnerability probability:

The FusedMinterUpgradable relies on EIP-712 without signature expiration or nonces
A malicious attacker could identify duplicate allocation requirements.

Additionally, if resetUsedTokens were to be called in error, this could open the contract up to damaging replay and
value extraction

Recommendations:

e Correlate the ALLOCATION TYPEHASH to specific collections and tokenlds in addition to minter/signer

e Generate and track per signature nonces

e Enforce expiration timestamps and block numbers

¢ Add global state change counter and track state changes (especially resetUsedTokens invocations), include
counter in signature

. < FIDESIUM Security Cost

!

Vulnerabilities

Addresses presumed to be contracts

Vulnerability severity:
Vulnerability probability:
The FusedMinterUpgradable.constructor function assumes multiple addresses are contracts

This could lead to silent transaction failures, or, in the event of malicious misconfiguration, the injection of
malicious contracts and protocol failure

Recommendations:

¢ Validate codesize in initialize

uint256 codeSize;

assembly {
codeSize := extcodesize (cathCollectionAddress)
}
require (codeSize > 0, "Governor::initialize: oathCollectionAddress is not a contract");

e Validate ABI conformity

try IERC20 (warmRegistry).getColdWallets (known test address) returns (address[] list) {
require(list.length == known value, "List length invalid");

require(list[0] == known value, "list is incorrect")

; 4 FIDESIUM Security

Cost

!

Vulnerabilities Low

Missing null signature validation

The FusedMinterUpgradable. validateSigner function does not validate against null signatures Low Low Active

Vulnerability severity: Low
Vulnerability probability: Low
Missing null signature validation
Recommendations:

Validate the signer is non zero, the signature is non null, and the signature length conform to

require(signer != address(®), "Invalid signer: zero address");

if (signer == msg.sender) {

return;

require(signature.length == 65, "Invalid signature length");
bytes32 r;
bytes32 s;
uint8 v;
assembly {
I

calldataload(signature.offset)
calldataload(add(signature.offset, 32))
byte(0, calldataload(add(signature.offset, 64)))

S

\

¥
require(r != 0 & s != 0 & (v == 27 || v == 28), "Invalid signature format");

bytes32 digest = getDigest(msg.sender, signer);

address recoveredSigner = ECDSA.recover(digest, signature);

require(recoveredSigner != address(@), "Invalid signature: recovers to zero address");

ECDSA

: < FIDESIUM Security Cost

:

Vulnerabilities

Current scan info

During this scan no informational security vulnerabilities were identified. The assessment covered all key
components of the project, including smart contract logic, access controls, and potential attack vectors. While no
critical issues were found, we recommend ongoing security monitoring and best practices to maintain the integrity
and resilience of the system.

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

