RISK AUDIT

N

NN
7\

| @)
\ | /)

N\

—

o FIDESIUM o

: < FIDESIUM

Security Cost

!

Executive Summary

Report
TOTAL
1 9 Medium risk
Jun 12, 2025

/100

Issue Summary
. 1 Issues

Caveats

4 3 Issues

International Meme Fund's codebase is well written,
but does incur a handful of high value flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

e Mapping Content and Functionality of API
e Application Logic Flaws

¢ Access Handling

e Authentication/Authorization Flaws

e Brute Force Attempt

e Input Handling

e Source Code Review

e Fuzzing of all input parameter

e Dependency Analysis

7 6 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on
International Meme Fund contracts

Repository Link: https://github.com/International-
Meme-Fund/markets-v2

Initial Commit Hash:

[d51b51c60f4358cf3acbfef201daf6c585216¢f8]

Followup scan Commit Hash:

[4b9500451963da0clal6c6d3894bccbbd89ac387]

Followup scan Commit Hash:

[a2000dbffcde05ac5af7ba202ca38350224d8b76]

. 4 Issues

Test Approach

. 6 7 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.

Consolidated requires

simultaneously available data

: o FIDESIUM Security Cost
Risk Issues
Vunerability Description Risk Probability = Status
Presumption of
standards compliant Univ3oracle @assumes decimals is standards compliant Critical
decimals
Presumption of safeTransfer iN SafeTransferLib presumes transfer was
succesful transfer succesful when returnpata is empty
Reentrancy The deposit and withdraw function make multiple external
calls before updating state.
Low TWAP Period The univzoracle has a very low TWAP period
Low Liquidity allowed) . L
for TWAP The univzoracle does not validate liquidity
Centralization Multiple contracts rely on quanzble OwnableUpgreadeable
Missing Access Control sync function lacks access control Active
One Step Ownership Multiple contracts rely on ounable OwnableUpgreadeable
Transfer
Missing Zero Address Multiple Iocgtlops in th_e codebase are missing a zero
P address validation. This can result in unexpected behavior,
Validations
and lost assets.
Missing Oracle whitelistTargetMarket Sets the oracle address without further .
P N Active
Validation validation
MEV Sandwich Attacks:
Missing Price Impact Minimum amounts are set to 0. Active
verification
M|s_smg_ contract proxyoracle does not valdate delegate address
validation
R_ellance on Block Multiple functions rely on block.timestanmp. Active
Timestamp
Missing Bounds Multiple functions do not validate upper and/or lower Acti
A ctive
Validation bounds.
Presumption of The 1MFLiquidityManager cOntract presumes success on
approval success .approve calls.
Missing Uniswap fee The 1MFLiquidityManager.whitelistTargetMarket function does not Acti
. . . - A ctive
tier validation validate fee validity.
Missing immutable pool in pIAoracle should be immutable.
Rellan.ce on Fixed Multiple functions rely on fixed deadlines. Active
Deadlines
Gas Ineffiency: Non safeTransfer iN SafeTransferLib applies multiple requires on Active

Strings

: o FIDESIUM Security Cost
Risk Issues

Vunerability Description Risk Probability Status
Gas Inefficiency: Redundant deposit in IMFLiquidityManager has redundant storage Info | Info Active
storage reads reads
Gas Inefficiency: Redundant deposit in IMFLiquidityManager has redundant storage Info | Info Active
storage reads reads
Gas Inefficiency: Redundant withdraw IN IMFLiquidityManager has redundant storage Info | Info Active
storage reads reads
Gas Ineff'|C|ency: Redundant usps?oo}m‘srcent and amountUsDSPoolMEMEDesiredin Info | Info Active
intermediate variable IMFLiquidityManager are redundant
Gas Ineffic_iency: Unnecessary user‘MEMEAmoun.t iN IMFLiquidityManager._withdraw iS Info Info Resolved
accumulation unnecessarily accumulated
Gas Inefficiency: Duplicate casts Multiple variables are cast repeatedly Info | Info
Gas Inefficiency: Long Revert univdoracle has long revert strings Info | Info

: < FIDESIUM

Security Cost

!

Risk Overview

Team Risk

Low risk: 1

No issues found in founding team

Whale Concentration

Risk summary: N/A

As this is a Github assessment, whale risks have not
been assessed

Liquidity
Risk summary: N/A

As this is a Github assessment, liquidity risks have not
been assessed

Smart Contract Risks

Risk summary:

The contracts are mostly well written, but have a
handful of flaws that should to be carefuly managed.

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Presumption of standards compliant decimals

Vulnerability severity: Critical
Vulnerability probability:
UniVv3Oracle assumes decimals is standards compliant

In the worst case a malicious developer could implement decimals causing gas exhaustion rendering the Oracle
unusable

Recommendations:

uint8 public immutable baseTokenDecimals;

uint8 private constant MAX REASONABLE DECIMALS = 36;

function validateDecimals (address token) internal view returns (uint8) {
(bool success, bytes memory data) = token.staticcall(
abi.encodeWithSignature ("decimals () ")
)i

require (success, "Decimals call failed");
require (data.length == 32, "Invalid decimals return data");
uint8 tokenDecimals = abi.decode (data, (uint8)):;

require (tokenDecimals > 0, "Decimals cannot be zero");

require (tokenDecimals <= MAX REASONABLE DECIMALS, "Decimals too large");

return tokenDecimals;

constructor (address pool, bool baseAssetIsToken0O, uint32 period) {

pool = IUniswapV3Pool (pool);

baseToken = baseAssetIsToken0 ? pool.tokenO() : pool.tokenl();
quoteToken = baseAssetIsToken0 ? pool.tokenl() : pool.tokenO();
baseTokenDecimals = validateDecimals (baseToken) ;

baseTokenAmount = uintl28 (10 ** baseTokenDecimals) ;

oracleScalar = 10 ** (36 - baseTokenDecimals) ;

period = period;

. < FIDESIUM Security Cost

!

Vulnerabilities

Low TWAP Period

Vulnerability severity:

Vulnerability probability:

The Univ30racle has a very low TWAP period
This is highly susceptible to manipulation
Recommendations:

Industry standard TWAP periods are considered to be 24 hours

Low Liquidity allowed for TWAP

Vulnerability severity:

Vulnerability probability:

The Univ3oracle does not validate liquidity

This is highly susceptible to manipulation, Flash Loans, Sandwich Attacks, and Arbitrage
Recommendations:

Implement a minimum liquidity and volume requirement

Reentrancy

Vulnerability severity:

Vulnerability probability:

The deposit and withdraw function make multiple external calls before updating state.
Recommendations:

e Apply the nonReentrant modifier
e Ensure adherence to Checks-Effects-Interactions
e Move external calls after state updates

Action Taken:

Resolved at commit 6da42f31cedcede381d20997826Fe75d0c8943fa

. < FIDESIUM Security Cost

!

Vulnerabilities

Presumption of succesful transfer

Vulnerability severity:
Vulnerability probability:
safeTransfer in SafeTransferLib presumes transfer was succesful when returnbData is empty

An attacker could create and list a malicious token to manipulate the protocol, potentiall compounding impact by
way of Flash Loans

Recommendations:
Add additional, explicit balance checks.
uint256 balanceAfter = token.balanceOf(address(this));

bool transferred = (balanceBefore - balanceAfter) == value;

require(transferred, ErrorsLib.TRANSFER_BALANCE_VERIFICATION_FAILED);

. < FIDESIUM Security Cost

!

Vulnerabilities

Centralization

Vulnerability severity:
Vulnerability probability:

Multiple contracts rely on Ownable
Recommendations:

e Introduce more fine grained access controls
e Ensure owner is a well managed multisig

Missing Access Control

Vulnerability severity:

Vulnerability probability:

sync function lacks access control

This opens the protocol up to market manipulation, MEV exploitation, dillution attacks, and gas wars.
During extreme market conditions this could result in a DoS.

Recommendations:

There are multiple ways to secure this function, each with their own tradeoffs

1. Limit sync to be callable only by Owner/Admin

2. Implement a Timelock on sync operations

3. Governance control

4. Require a staked bond before calling sync, and return only on improved protocol incentives

If centralization is not a primary concern, option (1) is the easiest and cleanest solution. Else some combination of
the other three is recommended.

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Zero Address Validations

Vulnerability severity:
Vulnerability probability:

Multiple setters in the codebase are missing a zero address validation. This can result in unexpected behavior, and

lost assets.

IMFLiquidityManager constructor morphoVaultAddress
IMFLiquidityManager withdraw marketAddress
IMFLiquidityManager freezeMarket marketAddress
IMFLiquidityManager unfreezeMarket marketAddress
IMFLiquidityManager _mintPosition tokenO
IMFLiquidityManager _mintPosition token1
IMFLiquidityManager _decreaseAndCollectUSDSMEME USDSMEMEPool
ProxyOracle constructor delegate
TwoHopOracle constructor oraclel
TwoHopOracle constructor oracle2

Recommendations:

Use != address(®@) to validate these parameters are not zero addresses

Action Taken:

Partially Remediated

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing contract validation

Vulnerability severity:

Vulnerability probability:

ProxyOracle does not valdate delegate address
Recommendations:

Ensure delegate is a valid, non EOA contract and conforms to expected ABI

One Step Ownership Transfer

Vulnerability severity:

Vulnerability probability:

Multiple contracts rely on OwnableUpgreadeable

Ownership transfer is a single step operation, which could lead to loss of protocol control
Recommendations:

Rely on Ownable2StepUpgradeable

Action Taken:

Resolved at commit 8ce7e18fe69b1f69e27a3461a1b90cObd8dc5c35

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Oracle Validation
Vulnerability severity:

Vulnerability probability:

whitelistTargetMarket sets the oracle address without further validation

markets [marketAddress] .oracleAddress = oracleAddress;

There are no validations that the address conforms to an expected interface, or its functionality or data quality.
Recommendations:

Validate the oracle implementation

mapping (address => bool) public approvedOracleImplementations;

function isApprovedOracleImplementation(address oracleAddress) internal view returns (bool) {
bytes32 codeHash;
assembly {

codeHash := extcodehash (oracleAddress)

return approvedOracleImplementations[oracleAddress] ||

approvedOracleCodeHashes [codeHash];

try IOracle (oracleAddress) .isValid() returns (bool isvValid) {
require (isvValid, ErrorsLib.ORACLE NOT VALID);

} catch {
revert(ErrorsLib‘INVALID_ORACLE_INTERFACE);

try IOracle (oracleAddress) .getPrice (marketAddress, address(USDS)) returns (uint256 price, uint256 timestamp) {
require (price > 0, ErrorsLib.ZERO_PRICE) ;
require (block.timestamp - timestamp < 1 hours, ErrorsLib.STALE ORACLE DATA);

} catch {
revert (ErrorsLib.ORACLE FETCH FAILED) ;

require (
isApprovedOracleImplementation (oracleAddress),

ErrorsLib.UNAPPROVED ORACLE IMPLEMENTATION

. < FIDESIUM Security Cost

!

Vulnerabilities

MEV Sandwich Attacks: Missing Price Impact verification

Vulnerability severity:
Vulnerability probability:

Minimum amounts are set to 0

params.amountOMin = 0;
params.amountlMin = 0;
decreaseParams.amountOMin = 0;
decreaseParams.amountlMin = 0;
decParams.amountOMin = 0;
decParams.amountlMin = 0;
swapParamsIn.amountOutMinimum = 0;

Recommendations:

e Implement slippage protection

¢ Implement max input checks

e Validate Price Impact

e Implement bounds for withdrawal/swap

(uint160 sgrtPriceX96, , , , , ,) = IUniswapV3Pool (pool).slotO();

(int24 twapTick,) = OracleLibrary.consult (pool, TWAP INTERVAL) ;
uintl60 twapSqgrtPriceX96 = TickMath.getSgrtRatioAtTick (twapTick);

uintl60 usedSqgrtPriceX96 = sqgrtPriceX96 < twapSqrtPriceX96 ?
sqgrtPriceX96 : twapSqrtPriceX96;

uint256 expectedOut = UniswapV3Library.getQuoteAtSqgrtRatio (

usedSqgrtPriceX96,
amountlIn,
tokenIn,
tokenOut
)7
minAmountOut = expectedOut - ((expectedOut * MAX SLIPPAGE BP) / 10000);

e Implement TWAP checks
¢ Implement Flashbots integration for MEV protection

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Bounds Validation

Vulnerability severity:
Vulnerability probability:
Multiple functions do not validate upper and/or lower bounds.

Contract Function Parameter Validation
IMFLiquidityManager deposit amount Upper

Recommendations:

Validate bounds

Reliance on Block Timestamp

Vulnerability severity:

Vulnerability probability:

Multiple functions rely on block.timestamp, which can be manipulated by miners.
Recommendations:

e Use block numbers instead of timestamps.
o If timestamps are necessary, use trusted external oracles.

. < FIDESIUM Security Cost

.

Vulnerabilities

Missing Uniswap fee tier validation

Vulnerability severity:
Vulnerability probability:
The IMFLiquidityManager.whitelistTargetMarket function does not validate fee validity.

Uniswap v3 allows specific feeTiers. While the function succesfully reverts on nonexistent pools, this could still
lead to wasted gas

Recommendations:

Explicityly validate pool fee validity.

mapping (uint24 => bool) private validFeeTiers;

validFeeTiers[100] = true;

validFeeTiers[500] = true;

validFeeTiers[3000] = true;

validFeeTiers[10000] = true;

function isValidFeeTier (uint24 fee) internal view returns (bool) {

return validFeeTiers|[fee];

require(isValidFeeTier (poolFee), "Invalid Uniswap fee tier");

. < FIDESIUM Security Cost

!

Vulnerabilities Low

Presumption of approval success

Vulnerability severity: Low
Vulnerability probability: Low

The IMFLiquidityManager contract presumes success on .approve calls.

MEME . approve (address (v3PositionManager), amountUSDSPoolMEMEDesired) ;

A malicious contract could selectively fail approvals and disrupt protocol operations
Gas could be wasted due to non standards compliant approval implementations
Recommendations:

Implement a safeApprove function

function safeApprove (IERC20 token, address spender, uint256 value) internal {

require (address (token) .code.length > 0, ErrorsLib.NO_ CODE) ;

if (value > 0) {
(bool resetSuccess, bytes memory resetReturndata) =
address (token) .call (abi.encodeCall (IERC20Internal.approve, (spender, 0)));
if (!resetSuccess || (resetReturndata.length != 0 && !abi.decode (resetReturndata, (bool)))) {

revert (resetSuccess ? ErrorsLib.APPROVE RETURNED FALSE : ErrorsLib.APPROVE REVERTED) ;

(bool success, bytes memory returndata) =
address (token) .call (abi.encodeCall (IERC20Internal.approve, (spender, value))):;
if (!success || (returndata.length != 0 && !abi.decode(returndata, (bool)))) {

revert (success ? ErrorSLib.APPROVE_RETURNED_FALSE : ErrorsLib.APPROVE_REVERTED);

Action Taken:

Remediated at commit 913b1d52e6994200d9dcb37755bf7b5edal5781F

Missing immutable

Vulnerability severity: Low
Vulnerability probability: Low

pool in DIAOracle should be immutable.
pool has no setters but is not immutable
Recommendations:

Set pool as immutable

. < FIDESIUM Security Cost

!

Vulnerabilities

Reliance on Fixed Deadlines

Vulnerability severity:
Vulnerability probability:

Multiple functions rely on fixed deadlines

params.deadline = block.timestamp + 1 hours;

Network congestion could delay transactions beyond this window, and MEV bots can manipulate transaction
ordering within this window

Additionally, since this deadline is set at runtime, mempool exposure increases the MEV bot risk
Recommendations:
¢ Monitor for high gas periods/network congestion, and dynamically adjust execution window based on gas cost

e Allow for configurable, preferably user configurable deadlines
e Ensure slippage protection is applied

' 4 FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Inefficiency: Redundant intermediate variable

Vulnerability severity: Info
Vulnerability probability: Info
USDSPoolPercent and amountUSDSPoolMEMEDesiredin IMFLiquidityManager are redundant

USDSPoolPercent is set to 100, but only used uint256 amountUSDSPoolMEMEDesired = (amount * USDSPoolPercent)
/ 100;

Recommendations:
Remove amountUSDSPoolMEMEDesired and USDSPoolPercent
Action Taken:

Resolved at commit ©613b1d52ae6994a00d9dcb37755bf7b5edal5781f

Gas Inefficiency: Unnecessary accumulation

Vulnerability severity: Info
Vulnerability probability: Info

userMEMEAmount in IMFLiquidityManager. withdraw is unnecessarily accumulated

userMEMEAmount = 0;

userMEMEAmount += (specificUserPosition.liquidityShares * MEMEPoolAmount) / market.totalStakedShares;

Recommendations:

Set userMEMEAmount directly

userMEMEAmount = (specificUserPosition.liquidityShares * MEMEPoolAmount) / market.totalStakedShares;

Action Taken:

Resolved at commit 913b1d5ae6994a00d9dch37755bf7b5edal5781f

. < FIDESIUM Security Cost

:

Vulnerabilities Info

Gas Ineffiency: Non Consolidated requires

Vulnerability severity: Info

Vulnerability probability: Info

safeTransfer in SafeTransferLib applies multiple requires on simultaneously available data
Recommendations:

Collapse the require calls into a single check and rely on revert. This will save ~ 200 gas per call.

if (!success || (returndata.length != @ && !abi.decode(returndata, (bool)))) {
revert(success ? ErrorsLib.TRANSFER_RETURNED_FALSE : ErrorsLib.TRANSFER_REVERTED);

. < FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Inefficiency: Duplicate casts

Vulnerability severity: Info
Vulnerability probability:
Multiple variables are cast repeatedly

address(v3PositionManager)
address(USDS)
address(token)
address(this)

Recommendations:

Ensure casts only happen once, before usage

Gas Inefficiency: Long Revert Strings

Vulnerability severity: Info

Vulnerability probability:

Univ30racle has long revert strings

Revert strings above 32 bytes consume significantly more gas
Recommendations:

Shorten revert strings to fit in 32 bytes

. < FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Inefficiency: Redundant storage read

Vulnerability severity: Info

Vulnerability probability: Info

deposit in IMFLiquidityManager has redundant storage reads
Each read of specificUserPosition requires a storage read
Recommendations:

Create a memory struct to avoid redundant SLOAD

UserMarketPosition storage userMarketPositions = users[msg.sender] [marketAddress];
userMarketPositions.positions.push() ;

UserPositions storage specificUserPosition = userMarketPositions.positions[userIndex];

uint256 liquidityShares;

if (market.totalStakedShares == 0) {
liquidityShares = amount;

} else {

liquidityShares = (amount * market.totalStakedShares) / MEMEPoolAmount;

specificUserPosition.depositAmountMEME = amount;

specificUserPosition.liquidityShares = liquidityShares;

Gas Inefficiency: Redundant storage read

Vulnerability severity: Info

Vulnerability probability: Info

deposit in IMFLiquidityManager has redundant storage reads
Each read of market.* requires a storage read
Recommendations:

Cache market values to avoid redundant storage reads

uint256 currentNftIndex = market.USDSPoolMEMESide.nftIndex;
uintl128 currentlLiquidity = market.USDSPoolMEMESide.liquidity;
address poolAddress = market.USDSPoolAddress;

uint24 poolFee = market.USDSPoolFee;

uint256 currentTotalStakedShares = market.totalStakedShares;

. < FIDESIUM Security Cost

.

Vulnerabilities Info

Gas Inefficiency: Redundant storage read

Vulnerability severity: Info

Vulnerability probability: Info

withdraw in IMFLiquidityManager has redundant storage reads
Each read of market.* requires a storage read
Recommendations:

Cache market values to avoid redundant storage reads, and conduct all computation on cached values

Market storage market = markets[marketAddress];
uint256 totalSharesInMemory = market.totalStakedShares;
uint256 morphoTPSInMemory = market.totalMORPHOTPS;

totalSharesInMemory += newShares;

morphoTPSInMemory = (morphoTPSInMemory * oldValue + newValue) / totalSharesInMemory;

market.totalStakedShares = totalSharesInMemory;

market.totalMORPHOTPS = morphoTPSInMemory;

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

