RISK AUDIT

for

rOREFPROTOCOL

March 07, 2025

o FIDESIUM o«

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Low risk

April 14, 2025

TOTAL

Low risk

April 07, 2025
TOTAL

Low risk

March 07, 2025

Issue Summary
. 0 Issues

Caveats

7 Issues

Fore's codebase is generally well written, but does
incur a handful of flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

e Mapping Content and Functionality of API
e Application Logic Flaws

¢ Access Handling

e Authentication/Authorization Flaws

e Brute Force Attempt

¢ Input Handling

e Source Code Review

e Fuzzing of all input parameter

e Dependency Analysis

10 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on Fore
Protocol contracts

Repository Link:
https://github.com/FOREProtocol/contracts

Initial Commit Hash:

{ 5155ce07ef24d6178b7e7a0de8b39227ac6a9be0]

Follow on Review:

[536b0e4df44da665d40041cbce4e072301bcbafd]

Follow on Review:

[4fe5c095067ed25c72fa995809cd33aab38a4d37]

. 6 Issues

Test Approach

. 6 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
Low be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.

Front Running:
Deterministic
Create2 Address

Missing Token
Validation

Missing Token
Validation

Missing Token
Validation

Missing Access
Control

Missing storage
collision protection

Implementation set
before admin

Signature Format
Assumption

Missing Pausability

Centralization

Missing Ownership
Validation

Missing Zero Address
Validations

Missing Contract
Validation

Missing Contract
Validation

One Step Ownership
Transfer
SafeMint Reentrancy

Unchecked external
calls

Reliance on Block
Timestamp

staking requirements before counting votes

The BeaconFactory contract relies on a deterministic
Create2 computation

The ForeToken contract in Governorbelegate.sol is presumed
to be set correctly

The token contract in ForeuniversalRouter.manageTokens iS
presumed to be set correctly

The TokenTncetiveregistry does not validate tokens fuIIy

The queue function in Governorbelegate.sol allows access
when noderator is address(0)

The Governorbelegator.sol does not prevent storage
collision

The Governorbelegator.sol contract sets implementation
before admin

The Ttimelock.sol assumes selector format

Multiple contracts do not implement pausability. This
could limit the ability of the developer to respond in an
emergency.

Multiple priviliged roles have significant modification
rights over the contracts and their state.

ForeProtocol.buyPower does not validate that nsg.sender owWns
the id

Multiple locations in the codebase are missing a zero
address validation. This can result in unexpected
behavior, and lost assets.

The protocoladdress and permit2addresscontracts in
ForeUniversalRouter.sol are presumed to be set correctly

The timelock_ contract in Governorbelegate.sol is presumed
to be set correctly

Multiple contracts apply the ownable pattern. It relies on a
one step transferownership strategy. This exposes these
contracts to accidental ownership transfer to malicious
or invalid wallets

ForeProtocol.createMarket relies on safemint

BasicMarketv2 makes unchecked external calls

Multiple contracts rely on biock.tinestamp, which can be
manipulated by miners.

: o FIDESIUNM Security Cost
Risk Issues
Vulnerability Description Risk Probability = Status
Reentrancy The executeTransaction function in Timelock.sol allows
reentrancy
Flash Loan The covernorbelegate contract does not enforce holding or

: < FIDESIUM

Security

Cost

!

Risk Issues

Vunerability

Missing existence validation

Missing bound validations

Missing balance validations
Missing allowance check

Potential for Front Running
on Market Creation

Circular/Redundant
proposals

Possible Zero Value transfers

Gas Optimization: Repeated
storage reads

Gas Optimization:
Unnecessary uint256

Gas Cost Inefficiency

Gas Optimization: Early
return

Gas Optimization:
Unnecessary computation

Gas Optimization: Inefficient
struct copying

Gas Optimization: Inefficient
struct copying

Description Risk = Probability

The buypPower @and upgradeTier function on the Foreprotocol
contract fail to validate that id corresponds to an existing
verifier NFT.

Multiple parameters lack upper/lower bound validations.
This could result in excessively high fees and other
issues.

GovernorDelegate does not validate balance before transfer.

GovernorDelegate does not validate allowance before
transfer.

BasicFactory.createMarket relies on marketHash uniqueness.

GovernorDelegate does not validate for circular or redundant
proposals.

GovernorDelegate allows zero value transfers.

Multiple repeated storage reads

The contract implements uint256 for multiple variables
and parameters.

The createmarket function in Foreprotocol could potentially
exceed block gas limits if alimMarkets array grows large.

The closeMarket function in BasicMarketv2 can short circuit
under certain conditions.

The _closemarket function in BasicMarketv2 always computes
verificatorsFees.

The marketLibv2 copies the entire market struct, even when
only some fields are accessed.

The Forevesting._vestedAmount copies the entire vesting struct
as nemory even though no local modifications are made.

Status

Active

Active

. < FIDESIUM Security Cost

:

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary: —14
No issues found in founding team The contracts are well written, and secure with only a

few minor issues..

: < FIDESIUM Security Cost

:

Vulnerabilities Critical

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.

. < FIDESIUM Security Cost

!

Vulnerabilities

Reentrancy

Vulnerability severity:

Vulnerability probability:

The executeTransaction function in Timelock.sol allows reentrancy
target.call{value: value} to a malicous target could result in reentrancy
Recommendations:

Add a reentrancy guard

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

Flash Loan

Vulnerability severity:

Vulnerability probability:

The GovernorDelegate contract does not enforce holding or staking requirements before counting votes
An attacker could execute a flashloan to bypass quorum, sway governance, and manipulate the protocol
Recommendations:

Implement a voting delay after staking, vote locking, token age weighted voting, and snapshot voting using
ERC20Votes

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

. < FIDESIUM Security Cost

!

Vulnerabilities

Front Running: Deterministic Create2 Address

Vulnerability severity:

Vulnerability probability:

The BeaconFactory contract relies on a deterministic Create2 computation

This happens in _createCategoricalMarket

An attacker could observe the mempool for calls to createCategoricalMarket or createClassicMarket, predict the
target address and deploy a malicious contract.

In the worst case, this could lead to theft of user funds, and it definitely opens the ecosystem up to griefing
attacks

Recommendations:

1.

aulh WN

Add a random salt parameter to Create2 deployment
function createCategoricalMarket (

bytes32 salt
createdMarket = Create2.deploy(uint256(salt), marketHash, bytecode);

Ensure the salt generation is handled internally by the factory and relies on a timestamp, blocknumber,

counter, or ideally combination thereof. Keep in mind this would not fully prevent the vulnerability, but would
drastically mitigate it

. Introduce a commit reveal pattern, where the commit sets, but does not reveal the salt

. Introduce a user provided, private salt, or rely on a good source of secure randomness such as an oracle
. Maintain a per creator nonce

. Implement address reservation

. Deploy markets through a private transaction channel such as Flashbots

While 3-6 are the most secure options, they represent a more dramatic rearchitect of the system, and 1-2 would
probably be sufficient in practice under most conditions. That said, to keep the protocol as safe as possible, we
recommend 3 with oracles and 6.

Action Taken:

Resolved in commit: 536boe4df44da665d40041cbce4e72301bcbatd

4 FIDESIUM Security

Cost

!

Vulnerabilities

Missing Token Validation

Vulnerability severity: =5
Vulnerability probability:
The ForeToken contract in GovernorDelegate.sol is presumed to be set correctly

The contract then relies directly on ERC20 transfer calls

This could lead to silent transaction failures, or, in the event of malicious misconfiguration, the injection of

malicious tokens and protocol failure
Recommendations:

e Rely on SafeERC20 and safeTransferFrom/safeTransfer
e Validate codesize in initialize

uint256 codeSize;

assembly {
codeSize := extcodesize (fore)
}
require (codeSize > 0, "Governor::initialize: Fore is not a contract");

¢ Validate that fore conforms to erc20 in initialize

try IERC20 (fore).totalSupply() returns (uint256 supply) {
// Check that total supply isn't unreasonably large

require (supply < 2**200, "Governor::initialize: Suspiciously large total supply"):;

Actions Taken:

Resolved in commit: 86c5ded5e6cc86e6719379eeb337979d900a4b75 by introducing SafeERC20 and applying
validations

< FIDESIUM Security Cost

.

Vulnerabilities

Missing Token Validation

Vulnerability severity:

Vulnerability probability:

The token contract in ForeUniversalRouter is presumed to be set correctly
This occurs in manageTokens and initialize

Recommendations:

¢ Validate codesize

uint256 codeSize;

assembly {
codeSize := extcodesize (token)
}
require (codeSize > 0, "token is not a contract");

¢ Validate that token conforms to erc20

try IERC20 (token) .totalSupply() returns (uint256 supply) {
// Check that total supply isn't unreasonably large

require (supply < 2**200, "Governor::initialize: Suspiciously large total supply"):

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900adb75

< FIDESIUM Security Cost

!

Vulnerabilities

Missing Token Validation

Vulnerability severity:

Vulnerability probability:

The TokenIncetiveRegistry does not validate tokens fully
Recommendations:

¢ Validate codesize

uint256 codeSize;

assembly {
codeSize := extcodesize (token)
}
require (codeSize > 0, "token is not a contract");

¢ Validate that token conforms to erc20

try IERC20 (token).totalSupply() returns (uint256 supply) {
// Check that total supply isn't unreasonably large

require (supply < 2**200, "Governor::initialize: Suspiciously large total supply"):;

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Access Control

Vulnerability severity:

Vulnerability probability:

The queue function in GovernorDelegate.sol allows access when moderator is address(0)
require (

moderator == address (0) || msg.sender == moderator,

"Governor: :queue: moderator only"

Recommendations:
Remove the first condition and ensure that msg.sender == moderator
Action Taken:

Resolved at commit 86c5def5e6cc86e6719379eeb337979d900adb75

Missing storage collision protection

Vulnerability severity:

Vulnerability probability:

The GovernorDelegator.sol does not prevent storage collision

This could allow a malicious deployer to take over the contract by overwriting proxy variables, or extract all funds
Recommendations:

e Specify specific slots for storage variables

bytes32 private constant IMPLEMENTATION SLOT =

bytes32 (uint256 (keccak256 ('eipl967.proxy.implementation')) - 1);

¢ Rely on battletested proxy libraries such as OpenZeppelen.TransparentUpgradeableProxy
* Reserve a dedicated storage gap for future upgrades

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900adb75

. < FIDESIUM Security Cost

:

Vulnerabilities

Implementation set before admin

Vulnerability severity:
Vulnerability probability:
The GovernorDelegator.sol contract sets implementation before admin

This means the deployer executes setimplementation with escalated privileges, allowing the deployer to
potentially set a malicious implementation

Recommendations:
Set admin before implementation
Action Taken:

Resolved at commit 86c5deB5e6cc86e6719379eeb337979d900adb75

. < FIDESIUM Security Cost

!

Vulnerabilities

Signature Format Assumption

Vulnerability severity:

Vulnerability probability:

The Timelock.sol assumes selector format
bytes4(keccak256(bytes(signature))) is used for function selectors.

A malicious or careless admin could provide a malicious or malformed signature that appears innocuos but
actually generates a selector for a damaging function

This could lead to catastrophic protocol damage
Recommendations:
Depending on risk tolerance:

. Use function signatures directly

. Implement a selector whitelist

. Use a standardized library such as ERC165

. Validate signature format for, e.g. open and close parens
. Require each call to include the full calldata

aua PP wWNE=

We recommend the selector whitelist and direct signature usage at a minimum.
Action Taken:

Resolved at commit 86c5deB5e6cc86e6719379eeb337979d900adb75

: < FIDESIUM

Security

Cost

!

Vulnerabilities

Missing Pausability

Vulnerability severity:

Vulnerability probability:

Multiple contracts do not implement pausability. This could limit the ability of the developer to respond in an

emergency.

GovernorDelegator
ForeProtocol
ForeVesting
BasicMarketV2
AccountWhitelist

Recommendations:

Use Pausable from OpenZeppelin

Centralization

Vulnerability severity:

Vulnerability probability:

Multiple priviliged roles have significant modification rights over the contracts and their state.

GovernorDelegate
GovernorDelegate
GovernorDelegator
GovernorModerator
AccountWhitelist
ForeProtocol
ForeProtocol
ProtocolConfig
ProtocolConfig
MarketLibV2

ForeUniversalRouter

Recommendations:

TokenIncentiveRegistry

admin
moderator
admin
moderator
initialAuthority
owner
operator
highGuard
owner
highGuard

admin

Ensure that these roles are tied to well maintained Multisig wallets.

: < FIDESIUM

Security Cost

!

Vulnerabilities

Missing Ownership Validation

Vulnerability severity:

Vulnerability probability:

ForeProtocol.buyPower does not validate that msg.sender owns the id.
Recommendations:

Add an explicit ownership check.

Missing Zero Address Validations

Vulnerability severity:

Vulnerability probability:

Multiple locations in the codebase are missing a zero address validation. This can result in unexpected behavior,

and lost assets.

ForeProtocol
ForeProtocol
ForeProtocol

ForeProtocol

Recommendations:

Use !|= address(0) to validate these parameters are not zero addresses

Action Taken:

createMarket

createMarket

createMarket

mintVerifier

creator

receiver

marketAddress

receiver

Partially remediated at commit 86c5de@5e6cc86e6719379eeb337979d900a4b75

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Contract Validation

Vulnerability severity:

Vulnerability probability:

The timelock contract in GovernorDelegate.sol is presumed to be set correctly
Recommendations:

¢ Validate codesize in initialize

uint256 codeSize;

assembly {
codeSize := extcodesize (timelock)
}
require (codeSize > 0, "Governor::initialize: Fore is not a contract");

¢ Validate that timelock conforms to TimelockInterface abi in initialize

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Contract Validation

Vulnerability severity:

Vulnerability probability:

The protocolAddress and permit2Addresscontracts in ForeUniversalRouter.sol are presumed to be set correctly
Recommendations:

¢ Validate codesize in initialize

uint256 codeSize;

assembly {
codeSize := extcodesize (protocolAddress)
}
require (codeSize > 0, "Router::initialize: protocol is not a contract");

e Validate that the contracts conforms to expected abi in initialize
Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

One Step Ownership Transfer

Vulnerability severity:
Vulnerability probability:

Multiple contracts apply the ownable pattern. It relies on a one step transferOwnership strategy. This exposes
these contracts to accidental ownership transfer to malicious or invalid wallets.

ForeProtocol
ProtocolConfig
ForeVesting
ForeVerifiers

Recommendations:

Implement Ownable2Step to drive a two step ownership transfer. This will require applying Upgradeable
independently.

. < FIDESIUM Security Cost

.

Vulnerabilities

SafeMint Reentrancy

Vulnerability severity:
Vulnerability probability:
ForeProtocol.createMarket relies on safeMint

safeMint has a potential vulnerability, whereby a malicious minting contract could provide a callback triggering
reentrancy, or calling other functions on Fore's contracts.

Recommendations:

e Apply the ReentrancyGuard pattern from Openzeppelin.
e Complete all state changes before calling safeMint, by moving allMarkets.push(marketAddress); above
safeMint

Unchecked external calls

Vulnerability severity:

Vulnerability probability:

BasicMarketV2 makes unchecked external calls

This could lead to silent failures, inconsistent state, reentrancy, or denial of service
Recommendations:

Implement a try/catch pattern on external calls

Action Taken:

Resolved at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

. < FIDESIUM Security Cost

!

Vulnerabilities

Reliance on Block Timestamp

Vulnerability severity:
Vulnerability probability:

Multiple contracts rely on block.timestamp, which can be manipulated by miners.

GovernorDelegate getBlockTimestamp
GovernorDelegate startForeRewardsCampaign
GovernorDelegate withdrawForeReward
GovernorDelegate withdrawForeStake
GovernorDelegate getNewStakeData
GovernorDelegate getHypotheticalVotes
GovernorDelegate propose
GovernorDelegate queue
GovernorDelegate state
GovernorDelegate castVotelnternal
GovernorDelegate isWhitelisted
Timelock getBlockTimestamp
Timelock queueTransaction
Timelock executeTransaction
BasicMarketV2 verify

BasicMarketV2 _openDispute
MarketLibV2 init

MarketLibV2 _predict
MarketLibV2 _verify

MarketLibV2 openDispute
MarketLibV2 beforeClosingCheck
ForeVesting withdraw
ForeVesting _vestedAmount

Recommendations:

¢ Use block numbers instead of timestamps.
o If timestamps are necessary, use trusted external oracles.

. < FIDESIUM Security Cost

:

Vulnerabilities

Missing existence validations

Vulnerability severity:
Vulnerability probability:

The buyPower and upgradeTier function on the ForeProtocol contract fail to validate that id corresponds to an
existing verifier NFT.

Recommendations:

Valiate the return value from foreVerifiers.power0f(id) is not 0 and the NFT exists.

: < FIDESIUM

Security

Cost

!

Vulnerabilities

Missing Bound Validations

Vulnerability severity:

Vulnerability probability:

Multiple parameters lack upper/lower bound validations. This could result in excessively high fees and other

issues.

GovernorDelegate
GovernorDelegate
GovernorDelegate
BeaconFactory
BeaconFactory
BeaconFactory
ForeVesting
ForeVesting
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry
TokenIncentiveRegistry

TokenIncentiveRegistry

Recommendations:
Implement validations

Action Taken:

propose
propose

propose
_createClassicMarket
_createClassicMarket
_createCategoricalMarket
addVestingEntries
addVestingEntries
initialize

initialize

initialize

initialize

initialize

addToken

addToken

addToken

addToken

addToken

targets.length

description

title

amountB

amountA

amounts[x]

_timestampEnd
_timestampStart
predictionDiscountRate
marketCreatorDiscountRate
verificationDiscountRate
foundationDiscountRate
marketCreationFee
predictionDiscountRate
marketCreatorDiscountRate
verificationDiscountRate
foundationDiscountRate

marketCreationFee

Partially remediated at commit 86c5ded5e6cc86e6719379eeb337979d900a4b75

Lower
Both

Both

Lower
Lower
Lower
Lower
Lower
Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper
Upper

Upper

. < FIDESIUM Security Cost
l

Vulnerabilities

Missing balance validations

Vulnerability severity:

Vulnerability probability:

GovernorDelegate does not validate balance before transfer.

This could lead to gas waste, failing transactions, bad UX, stuck limbo states, or delayed voting failures
Recommendations:

Validate contract balance before transfer using SafeERC20.balanceOf and a require check

Resolved at commit 86c5deB5e6cc86e6719379eeb337979d900a4b75

Missing allowance check

Vulnerability severity:

Vulnerability probability:

GovernorDelegate does not validate allowance before transfer.

This could lead to gas waste, failing transactions, bad UX, and griefing via allowance front running
Recommendations:

Validate allowance before transfer using SafeERC26.allowance and a require check

Actions Taken:

Resolved at commit 86c5de@5e6cc86e6719379eeb337979d900a4b75

. < FIDESIUM Security Cost

!

Vulnerabilities

Potential for Front Running on Market Creation

Vulnerability severity:
Vulnerability probability:
BasicFactory.createMarket relies on marketHash uniqueness.

A malicious script could identify a transaction in the mempool and submit creation with the same marketHash to
grief or as part of targeted disruption.

Recommendations:

Implement a Commit Reveal Scheme on market creation.

Incorporate sender address into marketHash calculation.

Implement a Nonce based system.

Implement a refunds system for creation fees that fail due to front running.

Circular/Redundant proposals

Vulnerability severity:

Vulnerability probability:

GovernorDelegate does not validate for circular or redundant proposals.
Recommendations:

Track parameters changed by proposals, being sure to clean them up when expired or defeated. Validate new
proposals against historic and active proposals.

Actions Taken:

Remediated at commit 86c5de@5e6cc86e6719379eeb337979d900a4b75 by introducing per user proposal limits

Possible Zero Value transfers

Vulnerability severity:

Vulnerability probability:

GovernorDelegate allows zero value transfers.

This could lead to gas waste, log pollution, and in extreme cases uncovered attack vectors
Recommendations:

Ensure that stakeForeForVotes and startForeRewardsCampaign conduct explicit non zero value checks before
transfer

Action Taken:

Resolved at commit: 4fe5c095067ed25c72fa995809cd33aab38a4d37

. < FIDESIUM Security Cost

!

Vulnerabilities

Gas Optimization: Repeated storage reads

Vulnerability severity:
Vulnerability probability:

Multiple repeated storage reads

GovernorDelegate stakeForeForVotes ForeStakes[msg.sender]
GovernorDelegate withdrawForeStake ForeStakes[msg.sender]
GovernorDelegate propose targets.length
AccountWhitelist initialize initialAccounts.length
MarketLibV2 calculateVerificationReward m.result

MarketLibV2 calculateVerificationReward v.side

MarketLibV2 closeMarket m.confirmed

MarketLibV2 closeMarket m.result

MarketLibV2 beforeClosingCheck m.startVerificationTimestamp

This consumes unnecessary gas
Recommendations:

Use local variables to enforce single reads
Action Taken:

Resolved at commit 4fe5c095067ed25¢72fa995809cd33aab38a4d37

Gas Optimization: Unnecessary uint256

Vulnerability severity:

Vulnerability probability:

The contracts implement uint256 for multiple variables and parameters.
This consumes unnecessary gas

Recommendations:

Check business logic and reduce uint size as appropriate

Action Taken:

Resolved at commit 4fe5c095067ed25c721a995809cd33aab38a4d37

. < FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Cost Inefficiency

Vulnerability severity: Info
Vulnerability probability: Info

The createMarket function in ForeProtocol could potentially exceed block gas limits if allMarkets array grows
large.

Recommendations:

Since random access to allMarkets is never required, a mapping should be utilized. This would require tracking
length separately.

Gas Optimization: Early return

Vulnerability severity: Info
Vulnerability probability: Info
The closeMarket function in BasicMarketVv2 can short circuit under certain conditions.

Recommendations:

function _closeMarket(MarketLibV2.ResultType result) private {
if (result == MarketLibV2.ResultType.INVALID) {
MarketLibV2.closeMarket(
market,
s

E}

®© © o |

E)

result
)5

return;

. < FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Optimization: Inefficient struct copying

Vulnerability severity: Info

Vulnerability probability: Info

The MarketLibV2 copies the entire market struct, even when only some fields are accessed.
o _verify
e verify

e openDispute

¢ resolveDispute

e closeMarket

Recommendations:

Selectively read necessary fields as function parameters

Action Taken:

Resolved at commit 4fe5c095067ed25c721a995809cd33aab38a4d37

Gas Optimization: Inefficient struct copying

Vulnerability severity: Info
Vulnerability probability: Info

The Forevesting. vestedAmount copies the entire vesting struct as memory even though no local modifications are
made.

Recommendations:

Use storage

Gas Optimization: Unnecessary computation

Vulnerability severity: Info

Vulnerability probability: Info

The closeMarket function in BasicMarketV2 always computes verificatorsFees.
Recommendations:

Move the computation into the if condition where it's result is used to avoid computing when unnecessary

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

