RISK AUDIT

for

& YPP Foundation

Aug 14, 2025

o FIDESIUM o

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Low risk

Aug 14, 2025

Issue Summary
. 1 Issues

Caveats

2 Issues

Eczodex's codebase is generally well written, but does
incur a handful of flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

8 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on Eczodex
contracts

Repository Link: https://github.com/Eczodex/ypp-
protocol

Initial Commit Hash:

[759c9611ed224cb6b5ede4c168c86e15cca83c65}

Included Contracts:

e YppBootstrapLiquidity.sol
YppCouncilToken.sol
YppGoverningCouncil.sol
YppMintContract.sol
mintUscyRewards.sol
teamRewards.sol
uscyLiquidityRewards.sol

. 1 Issues

Test Approach

2 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
losses, large-scale data disorder or loss of
control of authority management.

Critical

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.

computation of constant

: < FIDESIUM Security Cost
Risk Issues
Vulnerability Description Risk Probability Status
\l{JVnhrléi::I:i'(::ttgéjpassd:t YppCouncilToken allows unrestricted transfer despite whitelist = Critical grlgglayble Active
_update
Quorum Manipulation YppGoverningCouncil hardcodes a manipulable quorum Active
Merkle Root Overwrites uscyliquidityRewardsContract @and teamRewards contracts allow Active
overwriting of Merkle Roots
E:stllsé?ln Loss: Integer Precision Loss: Integer Division Active
Missing Zero Address Check Multiple contracts are missing zero address checks Active
Missing Contract Validation YppGoverningCouncil presumes contracts are set correctly Active
Missing Contract Validation uscyMintRewardsContract presumes contracts are set correctly Active
Missing Contract Validation YppBootstrapliquidity presumes contracts are set correctly Active
Centralization Priviliged roles have significant modification rights over Low Active
the contracts and their state.
Unbounded Array Growth YppMintContract.rewardPoolAddresses Jrows without bounds or Low Active
Y removal mechanisms

Missing Bounds Validation vppMintContract does not sufficiently validate bounds Low Active
Gas Vulnerability: Unbounded @ vppBootstraplLiquidity makes contract calls without gas Low Low Active
external calls bounds
Gas Inefficiency: Missing YppBootstraplLiquidity.yppMintImplementation iS set once in Active
Immutable constructor but is not immutable
Gas Inefficiency: Runtime YppBootstrapliquidity computes a known constant at runtime Active

: < FIDESIUM Security Cost

.

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary:
No issues found in founding team The contracts are well written, and secure with only a

few minor issues..

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Whitelist bypass: Unrestricted _update

Vulnerability severity: Critical
Vulnerability probability: Highly Probable
YppCouncilToken allows unrestricted transfer despite whitelist

_update is caled in the ERC-20 framework on every movement of tokens and is the only place where these
transfers can be blocked.

Recommendations:

Implement whitelist checks on transfer in _update to avoid voting rights acrruing to non whitelisted entities

function update (address from, address to, uint256 value) internal override ({
if (from != address(0) && to != address(0)) { // Not mint/burn
require (isWhitelisted(to), "Recipient not whitelisted");
}

super. update (from, to, value);

. < FIDESIUM Security Cost

!

Vulnerabilities

Quorum Manipulation

Vulnerability severity:
Vulnerability probability:
YppGoverningCouncil hardcodes a manipulable quorum

Quorum is hardcoded at a 1 vote, which can be trivially manipulated by a single rogue or compromised council
member

Recommendations:

e Hardcode a higher quorum setting

Merkle Root Overwrites

Vulnerability severity:

Vulnerability probability:

uscylLiquidityRewardsContract and teamRewards contracts allow overwriting of Merkle Roots

This could allow authorized parties, through malice, accident, or compromise, to render rewards unclaimable.
Recommendations:

Once claims on a root begin, make that root immutable:

require ('hasClaimsStarted[hashedUUID], "Claims already started for this UUID");

. < FIDESIUM Security Cost

!

Vulnerabilities

Precision Loss: Integer Division

Vulnerability severity:
Vulnerability probability:
Precision Loss: Integer Division

The teamRewards contract uses integer division to calculate team vesting. This can lead to lost assets due to
precision loss to rounding

Recommendations:

Precalculate unlocks based on number of expected vestings, and allow any remainder to be carried over to the
final vest

uint256 baseAmount = allocation / unlockPeriod;

uint256 remainder = allocation % unlockPeriod;

Centralization

Vulnerability severity:
Vulnerability probability:
Priviliged roles have significant modification rights over the contracts and their state.

e YppBootstraplLiquidity.DEFAULT_ADMIN_ROLE

e YppCouncilToken.DEFAULT_ADMIN_ROLE

e teamRewards.DEFAULT_ADMIN_ROLE

¢ uscyMintRewardsContract.DEFAULT_ADMIN_ROLE

e uscylLiquidityRewardsContract.DEFAULT_ADMIN_ROLE
e YppBootstrapLiquidity.deployer

Recommendations:

e Ensure wallets that hold these roles are controlled by well managed multisigs

Missing Bounds Validation

Vulnerability severity:

Vulnerability probability:

YppMintContract does not sufficiently validate bounds
updateAndAdjust should validate bounds on newMA
Recommendations:

require(newMA <= MAX_REASONABLE_MA)

. < FIDESIUM Security Cost

!

Vulnerabilities

Unbounded Array Growth

Vulnerability severity:
Vulnerability probability: Low
YppMintContract.rewardPoolAddresses grows without bounds or removal mechanisms

This can lead to governance attacks, economic manipulation, operational paralysis, state bloat, and in extreme
cases DoS and total protocol failure

Recommendations:

¢ Implement pool recycling mechanisms
e Implement pagination
e Implement emergency controls

mapping (address => uint256) public poolIndex;

uint256 public activePoolCount
function whitelistRewardContract (
bool recycledSlot = false;

for (uint256 i = 0; i1 < rewardPoolAddresses.length; i++) {
address existingAddress = rewardPoolAddresses[i];
if (existingAddress != address(0) &&
!rewardContracts[existingAddress].active &&
rewardContracts|[existingAddress].unclaimedRewards == 0 &&

rewardContracts[existingAddress].claimedRewards == 0) {

delete rewardContracts[existingAddress];

delete poolArrayIndex[existingAddress];

arrayIndex = 1i;
recycledSlot = true;
emit PoolRecycled (existingAddress, contractAddress, arraylndex);

break;

if (!recycledSlot) {
arrayIndex = rewardPoolAddresses.length;
rewardPoolAddresses.push (contractAddress) ;
} else {

rewardPoolAddresses[arrayIndex] = contractAddress;

function removeWhitelistRewardContract (

poocl.active = false;

activePoolCount--;

if (pool.unclaimedRewards > 0) {
totalUnclaimedRewards -= pool.unclaimedRewards;

pool.unclaimedRewards = 0;

. < FIDESIUM Security Cost

.

Vulnerabilities

Missing Zero Address Check

Vulnerability severity:
Vulnerability probability:
Multiple contracts are missing zero address checks

e YppGoverningCouncil.initialize(_token)
e YppGoverningCouncil.initialize(_timelock)

Recommendations:

Check contracts against address(0)

. < FIDESIUM Security Cost

.

Vulnerabilities

Missing Contract Validation

Vulnerability severity:
Vulnerability probability:
uscyMintRewardsContract presumes contracts are set correctly

These could be misconfigured, either through malice or accidental misconfiguration to point to incorrect contracts,
ranging in severity from rendering the protocol non functional, to actively and maliciously draining customers

e _mintingContract
e timelockController

Recommendations:

Validate contract abis and codesize in constructor

uint256 mintingContractCodeSize;

uint256 timelockCodeSize;

assembly {
mintingContractCodeSize := extcodesize(mintingContract)
}
require (mintingContractCodeSize > 0, " mintingContract is not a contract");
assembly {
timelockCodeSize := extcodesize(timelockController)
}
require(_timelockController > 0, "Timelock is not a contract");

try IYppMintContract (_ token) .getRewardPoolCap() returns (uint256) {
} catch {

revert InvalidTokenAddress() ;

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Contract Validation

Vulnerability severity:
Vulnerability probability:
YppGoverningCouncil presumes contracts are set correctly

These could be misconfigured, either through malice or accidental misconfiguration to point to incorrect contracts,
ranging in severity from rendering the protocol non functional, to actively and maliciously draining customers

e _token
e timelock

Recommendations:

Validate contract abis and codesize in constructor

uint256 tokenCodeSize;
uint256 timelockCodeSize;

assembly {

tokenCodeSize := extcodesize (_token)
}
require (mintCodeSize > 0, " yppMintAddress is not a contract");
assembly {
timelockCodeSize := extcodesize(timelock)
}
require (timeLockCodeSize > 0, "Timelock is not a contract");

try IERC20(_token).totalSupply() returns (uint256) {
} catch {

revert InvalidTokenAddress() ;

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Contract Validation

Vulnerability severity:
Vulnerability probability:
YppBootstrapLiquidity presumes contracts are set correctly

These could be misconfigured, either through malice or accidental misconfiguration to point to incorrect contracts,
ranging in severity from rendering the protocol non functional, to actively and maliciously draining customers

e _yppMintAddress
e timelockController

Recommendations:

Validate contract abis and codesize in constructor

uint256 mintCodeSize;
uint256 timeLockCodeSize;
assembly {
mintCodeSize := extcodesize(yppMintAddress)
}
require (mintCodeSize > 0, " yppMintAddress is not a contract");
assembly {
timeLockCodeSize := extcodesize(_ timelock)
}
require (timeLockCodeSize > 0, "Timelock is not a contract");
IYppMint testContract = IYppMint (_yppMintAddress) ;
try testContract.mint (address (0), address(0), 0) {
// Unexpected success - might be problematic
} catch Error (string memory reason) {
// Expected revert with reason - function exists
} catch (bytes memory) ({

revert ("Invalid YppMint implementation - mint function issue");

. < FIDESIUM Security Cost

.

Vulnerabilities

Gas Vulnerability: Unbounded external calls

Vulnerability severity: Low
Vulnerability probability: Low

YppBootstrapLiquidity makes contract calls without gas bounds

yppMintImplementation.updateUnclaimedRewards (address (this), amount) ;

yppMintImplementation.mint (address (this), deployer, amount);

This can cause out of gas exceptions due to reentrancy, inefficiency, or injection attacks.
Recommendations:

Limit gas for external contract interactions:

(bool successl,) = address(yppMintImplementation) .call{gas: GAS LIMIT UPDATE REWARDS} (

abi.encodeCall (IY¥YppMint.updateUnclaimedRewards, (address(this), amount))
)i

if (!successl) revert ExternalCallFailed("updateUnclaimedRewards") ;
(bool success2,) = address(yppMintImplementation) .call{gas: GAS LIMIT MINT} (
abi.encodeCall (IYppMint.mint, (address(this), deployer, amount))

)

if (!success2) revert ExternalCallFailed("mint");

. < FIDESIUM Security Cost

!

Vulnerabilities Info

Gas Inefficiency: Missing Immutable

Vulnerability severity: Info

Vulnerability probability: Info

YppBootstraplLiquidity.yppMintImplementation is set once in constructor but is not immutable
Recommendations:

Mark this variable as immutable. This can save upto 2000 gas per read.

Gas Inefficiency: Runtime computation of constant

Vulnerability severity: Info

Vulnerability probability: Info

YppBootstrapLiquidity computes a known constant at runtime
uint256 amount = 400_000 ether;

Recommendations:

Convert to a constant uint256 private constant BOOTSTRAP_AMOUNT = 400000000000000000000000 ;

. < FIDESIUM Security Cost

I

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

