RISK AUDIT

for
@DLC.Link

August 06, 2024

o FIDESIUM o

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Low risk
9 August 06, 2024

Issue Summary

. 0 Issues

Caveats

0 Issues

Block Asset's codebase is well written, but does incur
a handful of high value flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

4 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on
DLC.Link's contracts

Repository Link: https://github.com/DLC-link/dlc-
solidity

Initial Commit Hash:

{ 6fdde82a6bf8722cda31fdb2bl8b3a80232aa5b4]

. 3 Issues

Test Approach

. 1 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.

: < FIDESIUM

Security

Cost

!

Risk Issues

Vunerability

Centralization

One Step Ownership
Transfer

Race Condition

Mising Reentrancy
Guard

Race Condition

Race Condition

Unbounded Loop
Iteration

Non EOA contract
injection

Description

The priviliged roles owner, admin, and signer. Have significant
modification rights over the contract and its state.

The DLCBTC contract applies the Ownable pattern.

The importbata function on the pLcmanagercontract allows for the update of
diceTc state variable.

The pLcManager does not utilize the reentrancycuard for functions that
interatct with other contracts.

The importpata function on the piLcManagercontract allows for the update of
btcFeeRecipient, btcMintFeeRate, @and btcRedeemFecRatestate variables.

The importbata function on the pLcmanagercontract allows for the update of
minimumbeposit @and maximumbepositstate variables.

The getalipics function on the picvanager iterates an array of piclink.pLc.

The onlyvaultcreator modifier bLcvanagercontract relies on tx.origin

Risk

Low

Low

Low

Info

Probability Status

Unlikely

Unlikely

Medium

Open

Open

Open

Open

Open

Open

Open

Open

. < FIDESIUM Security Cost

!

Risk Overview

Team Risk Liquidity
Low risk: 1 Risk summary: N/A
No issues found in founding team As this is a Github assessment, liquidity risks have not

been assessed

Whale Concentration Smart Contract Risks

Risk summary: N/A Risk summary:
As this is a Github assessment, whale risks have not The contracts are well written, and have no major
been assessed flaws. Recommendations are hygienic/preventative in

nature, and primarily focus on Front running
avoidance, and user error avoidance.

: < FIDESIUM Security Cost

:

Vulnerabilities Critical

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.

: < FIDESIUM Security Cost

:

Vulnerabilities

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.

. < FIDESIUM Security Cost

!

Vulnerabilities

Centralization

Vulnerability severity:
Vulnerability probability:

The priviliged roles owner, admin, and signer. Have significant modification rights over the contract and its state.
This is amelioratd by the fact these wallets are hardcoded and not updateable

Recommendations:

¢ Ensure that these roles are tied to well maintained Multisig wallets.

One Step Ownership Transfer

Vulnerability severity:
Vulnerability probability:

The DLCBTC contract applies the Ownable pattern. It relies on a one step transferOwnership strategy. This
exposes the contract to accidental ownership transfer to malicious or invalid wallets.

Recommendations:

e Implement Ownable2Step to drive a two step ownership transfer. This will require applying Upgradeable
independently.

. < FIDESIUM Security Cost

!

Vulnerabilities

Race Condition

Vulnerability severity:
Vulnerability probability:

The importData function on the DLCManagercontract allows for the update of d1cBTC state variable. If a function
accessing this contract is then called, there could be unexpected behavior or even a call to an unexpected
contract. Of particular concern are calls to withdraw as they have the weakest access controls.

function importData (
DLCBTC _d1cBTC,
string calldata btcFeeRecipient,
uint256 minimumDeposit,
uint256 maximumDeposit,
uint256 _btcMintFeeRate,
uint256 btcRedeemFeeRate,
bool whitelistingEnabled
) external onlyAdmin {

dlcBTC = d1cBTC;

Recommendations:

e Ensure that any assets held in the old dIcBTC contract are transferred out before updating the state variable

e Add an additional parameter to every function accessing d1cBTC for the expected d1cBTC contract. Within
those functions compare the provided contract address with the expected contract address. If they do not
match, revert the transaction.

¢ Depending on importance of this issue, and to avoid deliberate frontrunning, a commit reveal scheme could
be implemented.

Mising Reentrancy Guard

Vulnerability severity:
Vulnerability probability:

The DLCManager does not utilize the ReentrancyGuard for functions that interatct with other contracts. Although the
contract follows the Checks-Effects-Interactions pattern, it remains best practice to implement ReentrancyGuards
as an additional security layer. No specific exploit paths have been identified.

Recommendations:

e Apply nonReentrant modifiers to any functions interacting with external contracts.

: < FIDESIUM

Security

Cost

!

Vulnerabilities

Race Condition

Vulnerability severity:

Vulnerability probability:

The importData function on the DLCManagercontract allows for the update of minimumDeposit and

maximumDepositstate variables.

function importData (

DLCBTC dlcBTC,

uint256 minimumDeposit,
uint256 maximumDeposit,
uint256 _btcMintFeeRate,
uint256 btcRedeemFeeRate,
bool whitelistingEnabled

) external onlyAdmin {

string calldata btcFeeRecipient,

minimumDeposit = minimumDeposit;
emit SetMinimumDeposit (minimumDeposit) ;

maximumDeposit = maximumDeposit;

The setStatusFunded then relies on this variable alongside user input. This could result in the value changing or
being unexpected at runtime due to transaction ordering. This issue is ameliorated due to access control settings

on setStatusFunded

Recommendations:

¢ Add an additional parameter to setStatusFunded for each of these variables. Within the function, compare the
provided values with the expected values. If they do not match, revert the transaction.
e Depending on importance of this issue, and to avoid deliberate frontrunning, a commit reveal scheme could

be implemented. Due to access control settings this is unlikely to be necessary.

. < FIDESIUM Security Cost

!

Vulnerabilities

Race Condition

Vulnerability severity:
Vulnerability probability:

The importData function on the DLCManagercontract allows for the update of btcFeeRecipient, btcMintFeeRate, and
btcRedeemFeeRatestate variables.

function importData (
DLCBTC dlcBTC,
string calldata btcFeeRecipient,
uint256 minimumDeposit,
uint256 maximumDeposit,
uint256 btcMintFeeRate,
uint256 _btcRedeemFeeRate,
bool whitelistingEnabled

) external onlyAdmin {
btcFeeRecipient _btcFeeRecipient;
btcMintFeeRate = btcMintFeeRate;

emit SetBtcMintFeeRate (btcMintFeeRate) ;
btcRedeemFeeRate = DbtcRedeemFeeRate;

The setupvault then relies on this variable alongside user input. This could result in the value changing or being

unexpected at runtime due to transaction ordering. This issue is ameliorated due to access control settings on
setupVault

Recommendations:

e Add an additional parameter to setupvault for each of these variables. Within the function, compare the
provided values with the expected values. If they do not match, revert the transaction.

¢ Depending on importance of this issue, and to avoid deliberate frontrunning, a commit reveal scheme could
be implemented. Due to access control settings this is unlikely to be necessary.

. < FIDESIUM Security Cost

!

Vulnerabilities

Unbounded Loop lteration

Vulnerability severity:
Vulnerability probability:

The getAllDLCs function on the DLCManager iterates an array of DLCLink.DLC. If the range provided is very large,
this could cause transactions to revert due to running out of gas.

function getAllDILCs (
uint256 startIndex,
uint256 endIndex
) external view returns (DLCLink.DLC[] memory) {
if (startIndex >= endIndex) revert InvalidRange () ;

if (endIndex > index) endIndex = index;

DLCLink.DLC[] memory dlcSubset = new DLCLink.DLC[] (
endIndex - startIndex

) ;

for (uint256 i1 = startIndex; i < endIndex; i++)

dlcSubset[i - startIndex] = dlcs[i];

return dlcSubset;

Recommendations:

¢ Add an additional require check to getAl1DLCs to prevent the range provided from exceeding a reasonably
sized hard cap.
* Add frontend pagination

: < FIDESIUM

Security

Cost

!

Vulnerabilities

Race Condition

Vulnerability severity:

Vulnerability probability:

The importData function on the DLCManagercontract allows for the update of minimumDeposit and

maximumDepositstate variables.

function importData (

DLCBTC dlcBTC,

uint256 minimumDeposit,
uint256 maximumDeposit,
uint256 _btcMintFeeRate,
uint256 btcRedeemFeeRate,
bool whitelistingEnabled

) external onlyAdmin {

string calldata btcFeeRecipient,

minimumDeposit = minimumDeposit;
emit SetMinimumDeposit (minimumDeposit) ;

maximumDeposit = maximumDeposit;

The setStatusFunded then relies on this variable alongside user input. This could result in the value changing or
being unexpected at runtime due to transaction ordering. This issue is ameliorated due to access control settings

on setStatusFunded

Recommendations:

¢ Add an additional parameter to setStatusFunded for each of these variables. Within the function, compare the
provided values with the expected values. If they do not match, revert the transaction.
e Depending on importance of this issue, and to avoid deliberate frontrunning, a commit reveal scheme could

be implemented. Due to access control settings this is unlikely to be necessary.

. < FIDESIUM Security Cost

.

Vulnerabilities Informational

Non EOA contract injection

Vulnerability severity: Info
Vulnerability probability:

The onlyvaultCreator modifier DLCManagercontract relies on tx.origin. An attacker could create a malicious
contract and trick a user into using it to make a call and injecting additional functionality, as the user would
remain tx.origin.

modifier onlyVaultCreator (bytes32 uuid) {
if (dlcs[dlcIDsByUUID[uuid]].creator != tx.origin) revert NotOwner () ;

Recommendations:

e Add an additional check to onlyVvaultCreator to ensure that tx.origin and msg.sender represent the same
entity to avoid contract injection.

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

