RISK AUDIT

for
CREDIT
cCOoOoP

February 12, 2025

o FIDESIUM o




: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Low risk

February 12, 2025

Issue Summary
. 2 Issues

Caveats

3 Issues

FourBy's codebase is well written, but does incur a
handful of low risk flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

6 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on
CreditCOOP contracts

Repository Link: https://github.com/credit-
cooperative/Line-Of-Credit

Initial Commit Hash:

[a9c13c109a5a5389639cd9508cc7 637720fcab05j

2 Issues

. 2 Issues

Test Approach

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.



Unnecessary storage reads

: < FIDESIUM Security Cost
Risk Issues
Vunerability Description Risk Probability = Status
Eg:ﬁle Manipulation/Flash Multiple contracts are vulnerable to oracle manipulation. Critical Active
Arbitrary Calldata passing The spigotLib contract passes arbitrary calldata Critical Active
Missing Sequencer Uptime Multiple L2 Oracles do not conduct a sequencer uptime check Active
Unprgtected One Time Setup The Lineofcredit contract lacks init protection Active
function
One Step Ownership Transfer = Multipe Contracts Implement a one step ownership transfer Active
Centralization Contracts have Priviliged Roles Active
Long Price Feed Latency Oracle Contracts use a single latency of 25 hours Active
s Multiple locations in the codebase are missing a zero address
M|s'smg' Zero Address validation. This can result in unexpected behavior, and lost Active
Validation
assets.
L Multiple locations in the codebase are missing a contract
Mls_smg_ Contract Address address validation. This can result in unexpected behavior, Active
Validation
and lost assets.
Missing Pausability The contract do not allow pausing. This could limit the ability Active
of the developer to respond in an emergency.
Reliance on Block Timestamp @ Multiple functions rely on block.timestamp. Active
Missing bound validations Multiple para_meters I:_ack upper/lower bound va_Ildatlons. This Active
could result in excessively high fees and other issues.
Multiple locations in the codebase are zero bytes validations.
Missing zero bytes validation = This could lead to accounting erros, or functionality Active
bypassing
Gas Optimization: The contract implements uint256 for multiple variables and Active
Unnecessary uint256 parameters.
Gas Optimization: The spigotediine contract executes unnecessary storage reads. Active



: < FIDESIUM Security Cost

!

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary:
No issues found in founding team The contracts are mostly well written, but have a

handful of flaws that should to be carefuly managed.



. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Oracle Manipulation/Flash Loan

Vulnerability severity: Critical
Vulnerability probability:
Multiple contracts are vulnerable to oracle manipulation and are using a single oracle/pricefeed.

An attacker could either trigger a flashloan, or monitor oracle update frequency and time transactions to hit price
boundaries

LineOfCredit
Escrow
LineFactory
ArbitrumOracle
BaseOracle
Oracle
zkEVMOracle
CreditLib

Recommendations:

e Implement a TWAP Oracle with manipulation checks

¢ Implement constant circuit breakers for max daily usage per wallet
e Implement multi oracle price feeds

e Implement oracle freshness checks

Arbitrary Calldata passing

Vulnerability severity: Critical
Vulnerability probability:
The SpigotLib contract passes arbitrary calldata

An attacker could construct malicious contracts or pass malicious data to self destruct, manipulate state, or have
other unexpected effects

function claimRevenue (

(bool claimSuccess, ) = revenueContract.call (data);

Recommendations:

e Ensure interface compliance, the function selector, and parameters match expectation. Use abi.decode to
identify params, bytes4 to identify the selector.
¢ Alternatively whitelist known good addresses



. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Sequencer Uptime

Vulnerability severity:

Vulnerability probability:

Multiple L2 Oracles do not conduct a sequencer uptime check
This could lead to economic exploits and loss of funds.

e ArbitrumOracle
e BaseOracle
¢ zkEVMOracle

Recommendations:

Implement a sequencer uptime check:

function isSequencerActive() internal view returns (bool) {
ArbSys arbSys = ArbSys(address(100));

uint256 lastBlockTime = block.timestamp - block.number + arbSys.arbBlockNumber();
return block.timestamp - lastBlockTime < MAX_PRICE_LATENCY;

Unprotected One Time Setup function

Vulnerability severity:
Vulnerability probability:
The LineOfCredit contract lacks init protection

This function is external and reverts after initial execution. An attacker could frontrun execution and call this
function at an unexpeted time, or with unexpected state.

Recommendations:
There are a handful of options, sorted in order of security

e Apply the constructor time initialization pattern
e Set msg.sender to a variable in constructor and validate init uses the same msg.sender



. < FIDESIUM Security Cost

!

Vulnerabilities

One Step Ownership Transfer

Vulnerability severity:

Vulnerability probability:

Multipe Contracts Implement a one step ownership transfer
This could lead to loss of contract control.

¢ ArbitrumOracle
¢ BaseOracle

¢ PolygonOracle
e zkEVMOracle

e SpigotLib

Recommendations:

Implement a two step ownership transfer



: < FIDESIUM

Security

Cost

!

Vulnerabilities

Centralization

Vulnerability severity:
Vulnerability probability:

Contracts have Priviliged Roles

SpigotedLine
LineFactory
ArbitrumOracle
BaseOracle
Oracle
zkEVMOracle
SpigotLib

SpigotLib

Recommendations:

Please ensure priviliged roles are well managed multisigs.

Long Price Feed Latency

Vulnerability severity:

Vulnerability probability:

Oracle Contracts use a single latency of 25 hours
This is a long period for volatile assets

ArbitrumOracle
BaseOracle
Oracle
PolygonOracle
zkEVMOracle

Recommendations:

Reduce latency, and introduce per asset heartbeats

arbiter
arbiter
owner
owner
owner
owner
self.owner

self.operator



. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Zero Address Validation

Vulnerability severity:
Vulnerability probability:

Multiple locations in the codebase are missing a zero address validation. This can result in unexpected behavior,

and lost assets.

EscrowedLine constructor _escrow
EscrowedLine _liquidate to
EscrowedLine _liquidate targetToken
EscrowedLine _rollover newlLine
SecuredLine constructor oracle_
SecuredLine constructor arbiter_
SecuredLine constructor borrower_
SecuredLine constructor swapTarget_
SecuredLine constructor spigot_
SecuredLine constructor escrow__
SecuredLine rollover newline
SecuredLine liquidate targetToken
SpigotedLine constructor oracle_
SpigotedLine constructor arbiter_
SpigotedLine constructor borrower_
SpigotedLine constructor spigot_
SpigotedLine constructor swapTarget_
SpigotedLine claimAndReplay claimToken
SpigotedLine claimAndTrade claimToken
SpigotedLine _claimAndTrade claimToken
SpigotedLine _claimAndTrade targetToken
SpigotedLine updateOwnerSplit revenueContract
SpigotedLine addSpigot revenueContract
SpigotedLine releaseSpigot to
SpigotedLine sweep to

continued ...



. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Zero Address Validation - continued

SpigotedLine sweep token
SpigotedLine tradeable token
SpigotedLine unused token
Escrow constructor _oracle
Escrow constructor _line
Escrow constructor _borrower
Escrow updateline _line
Escrow addCollateral token
Escrow enableCollateral token
Escrow releaseCollateral token
Escrow releaseCollateral to
Escrow liquidate token
Escrow liquidate to
LineFactory constructor moduleFactory
LineFactory deployEscrow owner
LineFactory deployEscrow borrower
LineFactory deploySpitgot owner
LineFactory deploySpitgot operator
LineFactory registerSecuredLine line
LineFactory registerSecuredLine spigot
LineFactory registerSecuredLine escrow
LineFactory registerSecuredLine borrower
LineFactory registerSecuredLine operator
LineFactory rolloverSecuredLine oldLine
LineFactory rolloverSecuredLine borrower
ModuleFactory deploySpigot owner
ModuleFactory deploySpigot operator
ModuleFactory deployEscrow oracle

continued ...



: < FIDESIUM Security Cost
:
Vulnerabilities
Missing Zero Address Validation - continued
ModuleFactory deployEscrow owner
ModuleFactory deployEscrow borrower
ArbitrumOracle _getLatestAnswer token
ArbitrumOracle setOwner _owner
ArbitrumOracle setPriceFeed token
ArbitrumOracle setPriceFeed feed
BaseOracle setPriceFeed feed
BaseOracle setPriceFeed token
BaseOracle getLatestAnswer token
BaseOracle _getLatestAnswer token
BaseOracle setOwner token
Spigot constructor _owner
Spigot constructor _operator
Spigot claimRevenue revenueContract
Spigot claimRevenue token
Spigot claimOwnerTokens token
Spigot claimOperatorTokens token
Spigot operate revenueContract
Spigot addSpigot revenueContract
Spigot removeSpigot revenueContract
Spigot updateOwnerSplit revenueContract
Spigot updateOwner newOwner
Spigot updateOperator newOperator
Spigot getOwnerTokens token
Spigot getOperatorTokens token
Spigot getSetting revenueContract

Recommendations:

Use != address(@) to validate these parameters are not zero addresses



. < FIDESIUM Security Cost

!

Vulnerabilities

Missing Contract Address Validation

Vulnerability severity:
Vulnerability probability:

Multiple locations in the codebase are missing a contract address validation. This can result in unexpected
behavior, and lost assets.

EscrowedLine constructor _escrow
LineFactory constructor moduleFactory
ArbitrumOracle setPriceFeed feed
BaseOracle setPriceFeed feed

Oracle setPriceFeed feed
PolygonOracle setPriceFeed feed
zkEVMOracle setPriceFeed feed

Recommendations:

e Use Address.isContract() to validate that these are a valid contract.
e Validate code length, e.g. targetAddress.code.length != 0
¢ Validate key ERC20 abi functions, eg:

try SafeERC20 (contractAddress) .totalSupply () returns (uint256) {
return true;
} catch {

return false;

Missing Pausability

Vulnerability severity:

Vulnerability probability:

Multple contracts do not allow pausing. This could limit the ability of the developer to respond in an emergency.
Recommendations:

Use Pausable from OpenZeppelin



: < FIDESIUM

Security

Cost

!

Vulnerabilities

Reliance on Block Timestamp

Vulnerability severity:

Vulnerability probability:

Multiple functions rely on block.timestamp, which can be manipulated by miners.

LineOfCredit
LineOfCredit
InterestRateCredit
InterestRateCredit
InterestRateCredit
ArbitrumOracle
ArbitrumOracle
BaseOracle
BaseOracle

Oracle

Oracle
PolygonOracle
PolygonOracle
zKEVMOracle
zkEVMOracle
SBCPriceFeedPolygon

stUSDriceFeedArbitrum

Recommendations:

e Use block numbers instead of timestamps.

constructor
healthcheck
accruelnterest

_accruelnterest

_calculatelnterestOwed

getLatestAnswer
_getLatestAnswer
getLatestAnswer
_getLatestAnswer
getLatestAnswer
_getLatestAnswer
getLatestAnswer
_getLatestAnswer
getLatestAnswer
_getLatestAnswer
latestRoundData

latestRoundData

o If timestamps are necessary, use trusted external oracles.



. < FIDESIUM Security Cost

!

Vulnerabilities

Missing bound validations

Vulnerability severity:
Vulnerability probability:

Multiple parameters lack upper/lower bound validations. This could result in excessively high fees and other

issues.
EscrowedLine _liquidate amount
SecuredLine constructor defaultSplit_
SecuredLine liquidate amount
Escrow constructor _minimumcCollateralRatio
LineFactory deployEscrow minCRatio
LineFactory deploySecuredLine ttl
LineFactory deploySecuredLineWithConfig coreParams.revenueSplit
LineFactory registerSecuredLine revenueSplit
LineFactory registerSecuredLine minCRatio
LineFactory rolloverSecuredLine ttl

Recommendations:

Implement lower and upper bound validations



. < FIDESIUM Security Cost

!

Vulnerabilities

Missing zero bytes validation

Vulnerability severity:
Vulnerability probability:

Multiple locations in the codebase are zero bytes validations. This could lead to accounting erros, or functionality

bypassing
EscrowedLine _liquidate id
LineOfCredit mutualConsentById id
LineOfCredit setRates id
LineOfCredit increaseCredit id
LineOfCredit close id
LineOfCredit borrow id
LineOfCredit withdraw id
LineOfCredit available id

Recommendations:

Use = bytes32(0) to validate all bytes32 parameters.



: < FIDESIUM

Security

Cost

!

Vulnerabilities

Gas Optimization: Unnecessary uint256

Vulnerability severity:

Vulnerability probability:

The contract implements uint256 for multiple variables and parameters.

EscrowedLine

EscrowedLine

LineOfCredit

_liquidate
_liquidate

MULTIPLE LOCATIONS

returns

amount

MULTIPLE LOCATIONS

SecuredLine liquidate amount
SpigotedLine MULTIPLE LOCATIONS MULTIPLE LOCATIONS
Escrow releaseCollateral amount
Escrow releaseCollateral returns
Escrow getCollateralRatio returns
Escrow getCollateralValue returns
Escrow liquidate amount

This might consume unnecessary gas
Recommendations:

Validate against business logic to ensure that you can not rely on smaller numbers such as uinte4

Gas Optimization: Unnecessary storage reads

Vulnerability severity:

Vulnerability probability:

The SpigotedLine contract executes unnecessary storage reads.
credit.token is read mutiple times in useAndRepay

This might consume unnecessary gas

Recommendations:

Cache credit.token



. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.



