RISK AUDIT

CraftEngine

o FIDESIUM o«

: < FIDESIUM

Security Cost

.

Executive Summary

Report

TOTAL

Medium risk

May 31, 2025

Issue Summary
. 2 Issues

Caveats

2 Issues

CraftTokens's codebase is generally well written, but
does incur a handful of high risk flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

6 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on
CraftEngine contract, provided as a flat SOL file

Contract File: TaxToken.sol

. 1 Issues

Test Approach

2 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.

. < FIDESIUM Security Cost

.

Risk Issues

Vulnerability Description Risk Probability = Status

Centralization: No Owner can not renounce. Critical Critical Active

renouncement

DoS: Large Contract Balance accumulation can lead to protocol failure Critical Critical Active

Balances

Incorrect transfer call The swapsack function calls transfer Active

Reentrancy The swapsack function allows reentrancy Active

Centralization prer has significant modification rights over the contracts and Active
their state.

Unlimited Token Unlimited tokens are approved. Active

Approval

Sa'ndW|ch AttaCk.: No The contract swaps tokens without slippage protection Active

Slippage protection

E;ggg;mc Attack: Fee setAutomatedMarketMakerpair can lead to fee bypass Active

Reliance on Block Multiple functions rely on block.timestanp, which can be manipulated Active

Timestamp by miners.

The contract applies the ownable pattern. It relies on a one step
transferounership strategy. This exposes the contracts to accidental Active
ownership transfer to malicious or invalid wallets

One Step Ownership
Transfer

M|s§|ng constant Multiple variables have no setters and should be constants Active
assignment

Unused import ERC20Burnable is imported but never used Active

Gas Optimization:
Inefficient Storage Several locations have storage access inefficiencies Active
Access

: < FIDESIUM

Security

Cost

!

Vulnerabilities Critical

Centralization: No renouncement

Vulnerability severity: Critical
Vulnerability probability: Critical

Owner can not renounce.

Given this is a tax driven ERC20 with marketing wallet, communities frequently expect owner renouncement to

avoid catastrophic rugpulls
Recommendations:

Add at least a partial renouncement of dangerous functions

mapping (bytes4 => bool) public renouncedFunctions;
bool public criticalFunctionsLocked = false;
event FunctionRenounced (bytes4 indexed functionSelector);
event CriticalFunctionsLocked() ;
function lockCriticalFunctions() external onlyOwner {
require (!criticalFunctionsLocked, "Already locked");
// Lock dangerous functions
renouncedFunctions[this.withdrawStuckETH.selector] = true;

renouncedFunctions[this.setFeesEnabled.selector] = true;

criticalFunctionsLocked = true;

emit CriticalFunctionsLocked() ;

renouncedFunctions[functionSelector] = true;

emit FunctionRenounced (functionSelector) ;

modifier notRenounced () {

’

require (launched, "Cannot lock before trading is enabled");

renouncedFunctions[this.setExcludedFromFees.selector] true;

renouncedFunctions|[this.withdrawStuckToken.selector] = true;

function renounceFunction (bytes4 functionSelector) external onlyOwner ({

require (! renouncedFunctions|[functionSelector], "Already renounced");

require (! renouncedFunctions[msg.sig], "Function has been renounced");

function withdrawStuckToken (address token, address to) external onlyOwner notRenounced {

. < FIDESIUM Security Cost

.

Vulnerabilities Critical

DoS: Large Contract Balances

Vulnerability severity: Critical

Vulnerability probability: Critical

Balance accumulation can lead to protocol failure

swapBack processes swapTokensAtAmount * swapCapMultiplier

Given the reliance on both volume and owner set environment variables, large balance accumulations could lead
to critical delays across an unknown number of blocks

Recommendations:

Implement percentage based calculations based on balance

: < FIDESIUM Security Cost

!

Vulnerabilities

Incorrect transfer call

Vulnerability severity:
Vulnerability probability:

The swapBack function calls transfer

transfer (marketingWallet, tokensForMarketing);

transfer (teamWallet, tokensForTeam) ;

Calls to transfer will incur fees, and potentially cause recursive swaps
Recommendations:

Use transfer

Reentrancy

Vulnerability severity:
Vulnerability probability:
The swapBack function makes external calls without reentrancy protection.

transfer (marketingWallet, tokensForMarketing) ;

transfer (teamWallet, tokensForTeam);

While direct reentrancy is protected from via the swapping variable. More sophisticated contract manipulation
and/or cross functional reentrancy is possible due to the direct transfer calls

Recommendations:

Add a reentrancy guard

import "Qopenzeppelin/contracts/security/ReentrancyGuard.sol";
contract TaxToken is ERC20, Ownable, ReentrancyGuard ({

function transfer(address from, address to, uint256 amount)
internal

override

nonReentrant

{

: < FIDESIUM Security Cost

!

Vulnerabilities

Centralization

Vulnerability severity:
Vulnerability probability:
Owner has significant modification rights over the contracts and their state.

These include, but are not limited to totally draining the contract via withdrawStuckETH and manipulating the fee
structure via setExcludedFromFees

Recommendations:

Implement timelock, and/or multisig governance. At the very least ensure that the high value Owner wallet is a
well managed multisig.

Sandwich Attack: No Slippage protection

Vulnerability severity:
Vulnerability probability:
The contract swaps tokens without slippage protection

This can lead to Sandwich Attacks and/or MEV bot abuse.

uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens (
tokensToSwap, 0, path, address(this), block.timestamp // minAmountOut = 0

)i

Recommendations:

Implement reasonable slippage protection. Fidesium typically recommends the 5-10% range.

Unlimited Token Approval

Vulnerability severity:
Vulnerability probability:
Unlimited tokens are approved.

If the router is compromised this could lead to total token drain and therefore total protocol failure

_approve (address (this), address (uniswapV2Router), type(uint256) .max);

Recommendations:

Approve only necessary amounts before each swap, and remove global approval

. < FIDESIUM Security Cost

.

Vulnerabilities

One Step Ownership Transfer

Vulnerability severity:
Vulnerability probability:

The contract applies the Oownable pattern. It relies on a one step transferOwnership strategy. This exposes these
contracts to accidental ownership transfer to malicious or invalid wallets.

Recommendations:

Implement Oownable2Step to drive a two step ownership transfer.

Economic Attack: Fee bypass

Vulnerability severity:

Vulnerability probability:

setAutomatedMarketMakerPair can lead to fee bypass

Fake or malicious address could be set which wouldn't trigger fee collection
Recommendations:

Restrict AMM pair addition or implement whitelist of approved DEX factories.

Reliance on Block Timestamp

Vulnerability severity:

Vulnerability probability:

Multiple functions rely on block.timestamp, which can be manipulated by miners.
Recommendations:

Rely on a combination of block.timestamp and block.number, or an external time Oracle.

. < FIDESIUM Security Cost

.

Vulnerabilities

Missing constant assignment

Vulnerability severity:
Vulnerability probability:
Multiple variables have no setters and should be constants

* marketingFee
¢ teamFee
e liquidityAmount

Recommendations:

Ensure these variables either have setters with appropriate validations, or are constants

. < FIDESIUM Security Cost

.

Vulnerabilities Info

Unused import

Vulnerability severity: Info

Vulnerability probability: Info
ERC20Burnable is imported but never used
Recommendations:

Remove unused imports

Gas Optimization: Inefficient Storage Access

Vulnerability severity: Info

Vulnerability probability: Info

Several locations have storage access inefficiencies
Recommendations:

e Cache storage lookup in swapBack
uint256 swapTokensAtAmount = swapTokensAtAmount;

uint256 swapCapMultiplier = swapCapMultiplier;

uint256 maxSwap = swapTokensAtAmount * swapCapMultiplier;

e Cache Mapping Lookups in _transfer

bool isToAMM = automatedMarketMakerPairs[to];
bool isSell = isToAMM && !swapping;

if (isToAMM && sellTotalFees > 0) {

¢ Use immutable for constructor set values

IUniswapV2Router02 public immutable uniswapV2Router;

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

