RISK AUDIT

blockassel.

o FIDESIUM o«

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Medium risk

January 28, 2025

Issue Summary
. 2 Issues

Caveats

2 Issues

Block Asset's codebase is well written, but does incur
a handful of high value flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

Mapping Content and Functionality of API
Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

8 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on Block
Asset contracts

Repository Link:
https://github.com/Blockasset/blockasset-labs

Initial Commit Hash:

[8186bf567554bb7cee7ee27dd2182820548c7c82J

0 Issues

. 2 Issues

Test Approach

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.

of token fungibility.

: o FIDESIUM Security Cost
Risk Issues
Vunerability Description Risk Probability = Status
Reliance on Blockhash as The resolve_raffle.rs program relies on blockhash as a source s .
Critical Active
source of randomness of randomness.
Unlimited Account Sizing The add_to_group.rs allows for unbounded account size Critical Active
increases.
Lack of pausability The staklng_ programs lack pausability logic, limiting the ability Active
to respond in an emergency
Authentication Bypass init_auction allows authentication bypass under certain Active
conditions.
-;R_Iel':‘:zrslfaen’?n S\{Jatll'iiiotz The claim_group_rewards.rs and claim_stake_rewards.rs programs Active
clockdrift P J rely on validator clock time.
PDA Index Reuse The stake.rs program allows for PDA reuse. Active
Reentrancy vulnerability The claim_group_rewards.rs program updates state after transfer. Active
The init_raffle.rs program relies on authorities for access
Missing authority revocation = control, but does not provide a method for updating or Active
revoking authority.
Front Running: Slippage redeen_tickets does not implement slipapge protection on token Active
Protection operations.
Time based Race condition bid_on_auction has a race condition due to the Active
ACTIVE_DURATION_SECONDS window.
i\//lallsizuajtgiotr?ken account close_auction lacks token account validation. Active
Metadata Validation Gap init_auction programmable lacks sufficient metadata validation. Active
Reliance on Clock time Multiple contracts rely on Clock time ciock: :get(). Active
Token fungibility assumption The init_token_identifier.rs program defaults to an assumption Active

: < FIDESIUM

Security Cost

!

Risk Overview

Team Risk

Low risk: 1

No issues found in founding team

Whale Concentration

Risk summary: N/A

As this is a Github assessment, whale risks have not
been assessed

Liquidity
Risk summary: N/A

As this is a Github assessment, liquidity risks have not
been assessed

Smart Contract Risks

Risk summary:

The contracts are mostly well written, but have a
handful of flaws that should to be carefuly managed.

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Reliance on Blockhash as source of randomness

Vulnerability severity: Critical
Vulnerability probability:

The resolve raffle.rs program relies on blockhash as a source of randomness.

let randomness = last blockhash accessor (&ctx.accounts.recent blockhashes)?;

let winner index = expand(randomness) % tickets.total;

Blockhashes can be manipulated or predicted by validators and are not a good source of randomness, additionally
a malicious validator could simulate the transaction, and choose to include or exclude it based on whether they
are happy with outcome

Recommendations:

Rely on Verifiable Random Functions through Switchboard:

use switchboard v2::{VrfAccountData, VrfRequestRandomness};

[derive (Accounts)]
pub struct ResolveWithVREF<'info> {
[account (mut)]
pub raffle: Account<'info, Raffle>,

pub vrf: AccountLoader<'info, VrfAccountData>,

pub fn resolve raffle(ctx: Context) -> Result<()> {

let vrf = ctx.accounts.vrf.load()?;

if !vrf.has result() ({

return Err (error! (ErrorCode: :VrfNotReady)) ;

let result

= vrf.get result()?;
let random value = u64::from le bytes(result[0..8].try into() .unwrap());

let winner_ index random value % ctx.accounts.raffle.total tickets;

Additionally, we would recommend spreading randomness generation and consumption across two transactions,
allowing for consistent VRF processing, as well as provable randomness. If VRF requests are too pricy, we advise
applyin a commit reveal scheme to randomness, and combining multiple sources of randomness such as the
blockhash, seed, clocktime, and aggregated oracle feeds. This will still be less secure than using VRF.

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Unlimited Account Sizing

Vulnerability severity: Critical
Vulnerability probability:

The add_to _group.rs allows for unbounded account size increases.

resize account (
&ctx.accounts.group_entry.to account info(),
ctx.accounts.group entry.try to vec()?.len() + 32, // Unbounded size!
&ctx.accounts.payer.to account info(),

&ctx.accounts.system program.to account info(),

This could allow an attacker to continuously add items, forcing an account resize with every addition, and
increasing the rent costs. By creating many maximum-sized accounts an attacker could trigger a DoS leading to a

total protocol failure.
Recommendations:

e Limit the group entry size
e Limit the maximum number of mints per group

; 4 FIDESIUM Security

Cost

!

Vulnerabilities

Lack of pausability

Vulnerability severity:

Vulnerability probability:

The staking programs lack pausability logic, limiting the ability to respond in an emergency
Recommendations:

e Limit the group entry size
e Limit the maximum number of mints per group

Token fungibility assumption

fn validate token metadata (
metadata: &Account<' , Metadata>,
is_fungible: bool,

) —> Result<()> {

require! (
metadata.data.name.len() > O,
ErrorCode: :InvalidTokenStandard

)

if is fungible {
require! (
metadata.data.symbol.len() > O,
ErrorCode: :InvalidTokenStandard
)i
require! (
metadata.data.uri.len() > O,
ErrorCode: :InvalidTokenStandard
) i
} else {
require! (
metadata.data.uri.len() > 0 &&
metadata.data.uri.starts with("https://"),

ErrorCode: :InvalidTokenStandard

Ok (())

. < FIDESIUM Security Cost

!

Vulnerabilities

Authentication Bypass

Vulnerability severity:
Vulnerability probability:
init_auction allows authentication bypass under certain conditions.

if !project.public && !project.authorities.contains (&authority.key())

return Err (error! (ErrorCode: :InvalidProjectAuthority));

An attacker could monitor for changes to public.

Additionally, if public were to change in another transaction, an attacker could identify old state and construct a
transaction based on that state

Recommendations:

Implement granular access controls

Implement expiration time on authorities

Implement time based authority validation to prevent stale state attacks
Provide explicit error codes for granular authentication failures
Revalidate state before any action

. < FIDESIUM Security Cost
l

Vulnerabilities

Reliance on Validator Timestamp subject to clockdrift

Vulnerability severity:

Vulnerability probability:

The claim_group_rewards.rs and claim_stake_rewards.rs programs rely on validator clock time.
let reward seconds = end time stamp - start time stamp;

if reward seconds <= 0 {

return Ok (());

Validators can include timestamps which are slightly (25 seconds) out of sync with real time. An attacker could
monitor validator timestamps, and frontrun these transactions

Recommendations:

¢ Rely on external time oracle. Ensure you validate against oracle poisoning by enforcing a weighted consensus,
requiring multiple validators, and validating deviations against a median

e Implement Moving Time averages for all time sensitive computations

e Ensure a minimum time between time sensitive operations

e Introduce a maximum acceptable time deviation require!((now - expected time).abs() <=
MAX_TIME_DEVIATION, ErrorCode::SuspiciousTimeDeviation);

PDA Index Reuse

Vulnerability severity:
Vulnerability probability:
The stake.rs program allows for PDA reuse.

This could lead to a repeated stake/unstake loop, and could potentially lead to economic manipulation, and bypass
of cooldown periods

Recommendations:

e Track staking indices
¢ Introduce an index blacklist to prevent abuse
e Add index analytics for better monitoring and detection

. < FIDESIUM Security Cost

.

Vulnerabilities

Reentrancy vulnerability

Vulnerability severity:
Vulnerability probability:

The claim_group_rewards.rs program updates state after transfer.

transfer (
CpiContext: :new (
ctx.accounts.token program.to account info (),
Transfer ({
from: ctx.accounts.staking pool reward token account.to account info(),
to: ctx.accounts.staker reward token account.to account info(),
authority: ctx.accounts.staking pool.to account info(),
b
)
.with signer(staking pool signer),

claim amount,

occurs before

ctx.accounts.grouping vault.total reward paid = ctx
.accounts
.grouping vault
.total reward paid
.checked add(claim amount)

.ok or (ErrorCode: :NumericalOverflow) ?;

An attacker could use a malicious contract that stakes tokens, and reenters claim_rewards with stale state
Recommendations:

¢ Update state before transfer, following the Check-Effects-Interaction pattern
e Implement a reentrancy guard require! (!ctx.accounts.group entry.is claiming,
ErrorCode: :ClaimInProgress);

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing authority revocation

Vulnerability severity:
Vulnerability probability:

The init raffle.rs program relies on authorities for access control, but does not provide a method for updating
or revoking authority.

if !project.public && !project.authorities.contains (&authority.key()) {

return Err (error! (ErrorCode::InvalidProjectAuthority));

If an authority private key is compromised, or an authority key is lost, this could lead to business continuity risk
and/or total protocol failure.

Recommendations:

e Implement a robust authority management system, including authority add, update, and remove
e Implement multisig requirements

< FIDESIUM Security Cost

!

Vulnerabilities

Front Running: Slippage Protection

Vulnerability severity:
Vulnerability probability:

redeem_tickets does not implement slipapge protection on token operations.

let cpi accounts transfer = token::Transfer ({
from: user token account.to account info(),
to: raffle token account.to account info(),
authority: user.to _account info(),

}i

let cpi program transfer = ctx.accounts.token program.to account info();
let cpi context transfer = CpiContext::new(cpi program transfer, cpi accounts transfer);
token::transfer (cpi context transfer, total ticket fee)?;

An attacker could detect the transfer in the mempool, and then front/backrun this transaction.
Recommendations:

Implement slippage protection, using oracle feeds and locked in amounts.

Time based Race condition

Vulnerability severity:
Vulnerability probability:
bid_on_auction has a race condition due to the ACTIVE_DURATION_SECONDS window.

if (auction.end <= now) && (auction.updated at + ACTIVE DURATION SECONDS <= now) {

return Err (error! (ErrorCode: :AuctionEnded)) ;

An attacker could monitor an auction in the runup to close, and congest the network, frontrun winning bids, or
use multiple accounts to drive up price.

Recommendations:

¢ Implement dynamic extension windows, based on auction activity
e Implement price velocity throttling
e Implement bid size restrictions

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing token account validation

Vulnerability severity:
Vulnerability probability:

close_auction lacks token account validation.

if bidder token account.mint != auction.treasury mint

|| bidder token account.owner != auction.highest bid payer.unwrap ()

return Err (error! (ErrorCode::InvalidTreasury));

An attacker could spoof the token account, potentially leading to panic or loss of funds.
Recommendations:

¢ Validate project authority and owner
* Validate token account SPL type
e Validate token balances before transfer

Metadata Validation Gap

Vulnerability severity:
Vulnerability probability:
init_auction programmable lacks sufficient metadata validation.

An attacker could spoof metadata, pass a non collection NFT, or define malicious or unexpected creator share
percentages

Recommendations:

Validate collection data

Validate creator share percentages

Validate creator/order priority

Validate metadata PDA derivation

Validate creators, and their position requirements
Validate total shares

Validate token matches programmable NFT standard
Validate token mutability

. < FIDESIUM Security Cost

!

Vulnerabilities

Reliance on Clock time

Vulnerability severity:
Vulnerability probability:
Multiple contracts rely on Clock time Clock: :get().

Clock time could be manipulated within a block, potentially leading to unexpected transaction orderings or other
race conditions.

Recommendations:

¢ Use slot numbers in addition to clocktime to enforce ordering
¢ Implement buffer periods to avoid last second manipulations

. < FIDESIUM Security Cost

.

Vulnerabilities

Token fungibility assumption

Vulnerability severity:
Vulnerability probability:

The init token identifier.rs program defaults to an assumption of token fungibility.

let is_fungible = match token standard {

Some (TokenStandard: :Fungible) => true,
Some (TokenStandard: :NonFungible) | Some (TokenStandard::ProgrammableNonFungible) => false,
_ => Erue,

A malicious , malformed, or unexpected token standard could drive the program down an undesired path,
potentially leading to unexpected results and market manipulation

Recommendations:

Implement a custom error and default to throwing it, as well as providing additional validations against token
surface

[error_code]
pub enum ErrorCode {
#[msg("Invalid or unknown token standard")]

InvalidTokenStandard,

let is_ fungible = match token standard {
TokenStandard: :Fungible | TokenStandard::FungibleAsset => true,
TokenStandard: :NonFungible | TokenStandard::ProgrammableNonFungible => false,

_ => return Err (error! (ErrorCode::InvalidTokenStandard))

if is fungible {
require! (
ctx.accounts.mint metadata.supply.is some(),

ErrorCode: :InvalidTokenStandard

validate token metadata (
&ctx.accounts.min:_metadata,
is_fungible

)2

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

