RISK AUDIT

for

Beanz

February 25, 2025

o FIDESIUM o

: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Medium risk

February 25, 2025

Issue Summary
. 4 Issues

Caveats

6 Issues

Block Asset's codebase is well written, but does incur
a handful of high value flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

* Mapping Content and Functionality of API
e Application Logic Flaws

e Access Handling

¢ Authentication/Authorization Flaws

¢ Brute Force Attempt

e Input Handling

e Source Code Review

e Fuzzing of all input parameter

e Dependency Analysis

5 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on Block
Asset contracts

Repository Link: https://github.com/caddifi/normie-
programs

Initial Commit Hash:

[e42ddbae4 9e3388ec2f9d724bb32Oa02509fbb46J

1 Issues

. 7 Issues

Test Approach

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
but is relevant to security best practices
or defence in Depth.

: o FIDESIUM Security Cost
Risk Issues
Vulnerability Description Risk Probability = Status
Denial of Service The create_global.rs script relies on unwrap. Critical Active
Frontrunning vulnerability bet.rs relies on init_if needed Without proper access Critical Active
controls
Reliance on build flads mainnet_constraint Macro bypasses all validation based Critical Active
9 on feature flag
Static Single Component Seed The create_glabal.rs script creates the PDA using a Critical Active
constant seed derivation (global).
Unchecked Metadata Creation create_mint.rs does not validate metadata creation Active
Missing authorization claim.rs does not verify a users authority matches Active
9 signer
Missing authorization withdraw.rs does not verify a users authority matches Active
9 signer
Missing account constraints init_uers.rs does not validate referrer wallet creation Active
Missing init_if needed validations buy_winner.rs iS mMissing crucial init_if_needed Active
— = validations
Rtigﬁlgwrrlﬁgrltan:girt\ispuIation with bet.rs USE€S try_borrow_mut_lamports Active
Unchecked token supply claim.rsdoes not validate token supply Active
Missing Signer Verification collect_fee.rs does not validate the signer Active
Missing domain_bump validation bet.rs does not validate domain_bump Active
Blacklist approach to state validation buy_winner.rs validates domain_next.status against a Active
blacklist
Missing Authority/Admin bet.rsdoes not set authority or admin during Active
Y domaininitialization
Sybil vulnerability create_mint.rs allows repeated invocation Active
Case sensitive url bet.rs does not enforce consistent cases on URLs Active
Reliance on Clock time Multiple contracts rely on Clock time clock: :get(). Active
Missing zero value validation withdra.rs does not enforce non zero withdrawals Active
Missing input validations create_global.rs does not conduct sufficient input Active
validation
Missing URL validation bet.rs does not validate url length, structure, or Active
9 validity
Reuse without Revalidation buy_winner.rs reuses total_fee from bet_entry_prev Active
without revalidation
Unnecessary rent account init_users.rs instantiates a dedicated rent account Active

: < FIDESIUM

Security Cost

!

Risk Overview

Team Risk

Low risk: 1

No issues found in founding team

Whale Concentration

Risk summary: N/A

As this is a Github assessment, whale risks have not
been assessed

Liquidity
Risk summary: N/A

As this is a Github assessment, liquidity risks have not
been assessed

Smart Contract Risks

Risk summary:

The contracts are mostly well written, but have a
handful of significant flaws that should to be carefuly
managed.

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Denial of Service

Vulnerability severity: Critical
Vulnerability probability:
The create_global.rs script relies on unwrap.

An attacker could craft malformed data to appear valid and pass parsing. The unwrap call would then trigger a
program panic.

Recommendations:

Replace the unwrap call with proper error handling

Frontrunning vulnerability

Vulnerability severity: Critical
Vulnerability probability:
bet.rs relies on init_if needed without proper access controls

An attacker could monitor the mempool and frontrunning initialization. Bets on the initialized domain would then
affect potentially unexpected domains, leading to finacials loss

Recommendations:

e Ensure only verified domain owners can create domain accounts
¢ Prevent name squatting through verification
e Add explicit ownership records

Reliance on build flags

Vulnerability severity: Critical
Vulnerability probability:
mainnet_constraint macro bypasses all validation based on feature flag

If a build pipeline errors or a developer misconfigures it, this could lead to total loss of control in production, given
this is used to validate authority in buy winner.rs

Additionally, this will make testing validation features challenging and unpredictable.
Recommendations:
Given this is only ever used for authority validation, Fidesium recommends

e Ensure only verified domain owners can create domain accounts
e Prevent name squatting through verification
e Add explicit ownership records

. < FIDESIUM Security Cost

!

Vulnerabilities Critical

Static Single Component Seed

Vulnerability severity: Critical

Vulnerability severity:

The create_global.rs script creates the PDA using a constant seed derivation (global).

This leaves the program open to Account Injection Attack, Namespace Collision Attack, and Unauthorized access
Recommendations:

Make PDA derivation utilize program id, version/environment discrimniators, a namespace, and a dedicated type
base seed, e.g:

[account (
init,

payer = authority,

space = 8 + Global::INIT SPACE,
seeds [
b"beans protocol™,
b"global config",
b"v1l",
protocol identifier.as ref(),
program id.key () .as ref ()
I
bump,

< FIDESIUM Security Cost

!

Vulnerabilities

Unchecked Metadata Creation

Vulnerability severity:
Vulnerability probability:
create_mint.rs does not validate metadata creation

An attacker could craft malicious metadata, leading to token impersonation, metadata poisoning, storage
exploitation, or market manipulation

Recommendations:

¢ Validate url input
require! (
url.len() <= MAX URL_LENGTH && is_valid_url_ format (&url),

ErrorCode: :InvalidUrlFormat
) i

e Verify metadata

let metadata account = Metadata::from account info (&self.metadata)?;

require! (
metadata account.mint == mint.key() &&
metadata account.update authority == global.key(),

ErrorCode: :MetadataVerificationFailed

¢ Verify URL content safety

let metadata uri = format! ("https://beans.fun/token/{}", encoded url);
require! (
metadata uri.len() <= MAX URI LENGTH,

ErrorCode: :UriTooLong

e Add separate post creation correctness validations

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing authorization

Vulnerability severity:
Vulnerability probability:
withdraw.rs does not verify a users authority matches signer
An attacker could pass in an invalid user account or withdraw bets he does not control
Recommendations:
require! (

bet_entry.user == authority.key(),
ErrorCode: :UnauthorizedWithdrawal

)s

Missing authorization

Vulnerability severity:

Vulnerability probability:

claim.rs does not verify a users authority matches signer
An attacker could pass in an invalid user account

Recommendations:

[account (

mut,

constraint = user.authority == authority.key() @ ErrorCode::UnauthorizedUser,
)1

pub user: Box>,

Missing account constraints

Vulnerability severity:
Vulnerability probability:
init_users.rs does not validate referrer_wallet creation
Recommendations:
#[account (

constraint = referrer wallet.is some() && referrer pda.is some ()

&& referrer pda.as ref () .unwrap().authority == referrer wallet.as ref().unwrap() .key()

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing init_if_needed validations

Vulnerability severity:
Vulnerability probability:
buy winner.rs is missing crucial init if needed validations

e Ownerhsip Validation

¢ Content Validation

e User Authorization

¢ Initial State Constraints

Recommendations:

[account (
init if needed,
payer = authority,
space = 8 + BetEntry::INIT SPACE,

seeds = [b"bet entry", url to.as bytes(), user keypair.as_ref(), launch idx.to le bytes().as ref()],
bump,
constraint = !bet entry next.initialized ||

(bet _entry next.domain == domain next.key() &&

bet entry next.launch idx == launch idx),

Direct lamport manipulation with try_borrow_mut_lamports.

Vulnerability severity:

Vulnerability probability:

Multiple functions use try borrow mut lamports

This bypasses the Account System, does not provide transaction atomicity guarantees, and alows for fund loss

e bet.rs

e buy_winner.rs
e withdraw.rs

e create_mint.rs
e collect_fee.rs

Recommendations:

Use Cross Program Invocation to the System Program with PDA signing for SOL transfers

. < FIDESIUM Security Cost

!

Vulnerabilities

Unchecked token supply

Vulnerability severity:

Vulnerability probability:

claim.rsdoes not validate token supply
Recommendations:

Add Explicit token supply validations
Implement a distribution cap per domain
Add mint authority controls

Add global supply tracking

Missing Signer Verification

Vulnerability severity:

Vulnerability probability:

collect_fee.rs does not validate the signer
Recommendations:

Add and verify an authority account.

Missing domain_bump validation.

Vulnerability severity:

Vulnerability probability:

bet.rs does not validate domain_bump

This could lead to transaction failures, transaction highjacking, or even signature verification bypass
Recommendations:

Validate domain_bump:

let (expected domain address, calculated bump) = Pubkey::find program address (
&[b"domain", url.as bytes (), launch idx.to le bytes().as ref ()],

ctx.program id

require! (
domain bump calculated bump && domain.key () expected domain address,

ErrorCode: :InvalidBump

. < FIDESIUM Security Cost

.

Vulnerabilities

Blacklist approach to state validation.

Vulnerability severity:

Vulnerability probability:

buy_winner.rs validates domain_next.status against a blacklist
require! (

domain_next.status != Status::Launched,

ErrorCode: :DomainLaunched

Blacklist validations are unreliable and lead to logic errors
Recommendations:

e Validate what domain_next.status is, instead of what it isn't
e Conduct a full state machine check

Missing Authority/Admin

Vulnerability severity:

Vulnerability probability:

This means there's no explicit ownership or control over who can modify the domain later.
An attacker could potentially initialize domains they shouldn't have access to
Recommendations:

e Validate authority

require! (

authority.key() == global.admin

¢ Assign an authority to domain

. < FIDESIUM Security Cost

!

Vulnerabilities

Sybil vulnerability

Vulnerability severity:
Vulnerability probability:
create_mint.rs allows repeated invocation

An attacker could repeatedly call the function, sybillin themselves, and overconsuming rent, while leading to chain
storage bload

Recommendations:

Implement Rate Limiting, cost barriers, and a resource allocation cap

Case sensitive url

Vulnerability severity:
Vulnerability probability:

bet.rs does not enforce consistent cases on URLSs.

domain.url = url.clone()

Since URLs are case insensitive this could lead to URL clashes.
Recommendations:

Cast URLs to a consistent case, with e.g.:to_lowercase()

Reliance on Clock time

Vulnerability severity:
Vulnerability probability:
Multiple contracts rely on Clock time Clock: :get().

Clock time could be manipulated within a block, potentially leading to unexpected transaction orderings or other
race conditions.

Recommendations:

e Use slot numbers in addition to clocktime to enforce ordering
e Implement buffer periods to avoid last second manipulations

. < FIDESIUM Security Cost

!

Vulnerabilities

Missing zero value validation

Vulnerability severity:
Vulnerability probability:
withdra.rs does not enforce non zero withdrawals
Recommendations:
require! (

amount non beans sol > 0 || amount beans sol > 0,

ErrorCode: :ZeroWithdrawal Amount

Missing input validations

Vulnerability severity:
Vulnerability probability:
create_global.rs does not conduct sufficient input validation

e num_rounds lacks validation
e launch_time_period lacks validation
e vesting_period lacks validation

Recommendations:

Validate upper and lower bounds as well as non zero status

Missing URL validation

Vulnerability severity:

Vulnerability probability:

bet.rs does not validate url length, structure, or validity
This could lead to storage bloat or malformed data.
Recommendations:

e Validate URL min and max length
e Validate URL structure
e Introduce a DNS verification Oracle, to enforce domain validity

. < FIDESIUM Security Cost

.

Vulnerabilities

Reuse without Revalidation

Vulnerability severity:

Vulnerability probability:

buy winner.rs reuses total fee from bet entry prev without revalidation

An attacker could manipulate the prior total fee potentially leading to loss of funds
This could lead to storage bloat or malformed data.

Recommendations:

Revalidate current state of total fee before reuse

. < FIDESIUM Security Cost

:

Vulnerabilities Info

Unnecessary rent account

Vulnerability severity: Info

Vulnerability probability: Info

init_users.rs instantiates a dedicated rent account
This is no longer necessary in modern Solana programs
Recommendations:

Remove rent account

. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.

