RISK AUDIT

for

AITV.GG

Aug 07, 2025

o FIDESIUM o




: < FIDESIUM

Security Cost

!

Executive Summary

Report

TOTAL

Low risk

Aug 08, 2025

TOTAL

Low risk

Aug 07, 2025

Issue Summary
. 0 Issues

Caveats

1 Issues

AITV's codebase is generally well written, but does
incur a handful of flaws.

Methodology

The assessment methodology covered a range of
phases and employed various tools, including but not
limited to the following:

e Mapping Content and Functionality of API
¢ Application Logic Flaws

Access Handling
Authentication/Authorization Flaws

Brute Force Attempt

Input Handling

Source Code Review

Fuzzing of all input parameter
Dependency Analysis

51 Issues

Abstract

Fidesium's automated risk assessment service was
requested to perform a risk posture audit on
TriviTournament contracts

Repository Link:
https://github.com/agentcoinorg/dao-contracts

Initial Commit Hash:

{28aa42b4222f5734127585c26783f7adl865aff8 ]

Included Contracts:

e AITVAirdropVesting.sol
¢ DeployVotingEscrow.s.sol

. 4 Issues

Test Approach

. 2 3 Issues

Fidesium performed both Whitebox and Blackbox
testing, as per the scope of the engagement, and
relied on automated security testing.

Severity Definitions

The issue can cause large economic
Critical losses, large-scale data disorder or loss of
control of authority management.

The issue puts users' sensitive information
at risk or is likely to lead to catastrophic
financial implications.

The issue puts a subset of users' sensitive
information at risk, reputation damage or
moderate financial impact.

The risk is relatively small and could not
Low be exploited on a recurring basis, or is
low-impact to the client's business.

The issue does not pose an immediate risk
Informational @ but is relevant to security best practices
or defence in Depth.



uint256

: o FIDESIUM Security Cost
Risk Issues
Vulnerability Description Risk Probability = Status
DePIOYment. . The DeployVotingEscrow.s.sol script trusts the bytecode without
Script: Implicitly e
- verification
trusted binary
Reliance on Block = arTvairdropvesting.sol contract relies on block.timestamp, which
Timestamp can be manipulated by miners.
Missin The arTvairdropvesting.sol contract does not implement
9 pausability. This could limit the ability of the developer to
Pausability h
respond in an emergency.
The aAtTvairdropvesting.sol contract apply the ownable pattern. It
One Step ) i .
. relies on a one step transferownership strategy. This exposes
Ownership . . o
these contracts to accidental ownership transfer to malicious
Transfer - ;
or invalid wallets
Missing Contract The atTvairdropvesting contract presumes token and votingEscrow
Validation to be set correctly
Missing
Deployment The peployvotingEscrow.s.sol SCript presumes AITV_TOKEN_ADDRESS iS
Contract Variable = a valid contract
Validation
Missing
Deployment . :
Success The peployvotingEscrow.s.sol Script presumes deploy success
Validation
Ssiel(?eeggg:'ency: The AITVAirdropVesting.claimAndForfeitRemaining function
ary computes over constants
computation
Gas Inefficiency: The arTvairdropvesting contract uses uint2s6 Active



: < FIDESIUM Security Cost

!

Risk Overview

Team Risk Smart Contract Risks
Low risk: 1 Risk summary: 2413
No issues found in founding team The contracts are well written, and secure with only a

few minor issues..



: < FIDESIUM Security Cost

:

Vulnerabilities Critical

Current scan criticals

During this scan no critical security vulnerabilities were identified. The assessment covered all key components of
the project, including smart contract logic, access controls, and potential attack vectors. While no critical issues
were found, we recommend ongoing security monitoring and best practices to maintain the integrity and
resilience of the system.



. < FIDESIUM Security Cost

!

Vulnerabilities

Deployment Script: Implicitly trusted binary

Vulnerability severity: High
Vulnerability probability: Unlikely
The DeployVotingEscrow.s.sol script trusts the bytecode without verification

This represents a supply chain risk. An attacker can inject malicious bytecode, through compromised build
tools/compilers, CI/CD tooling, developer machines, or tampered repositories.

bytes memory bytecode = vm.parseJsonBytes(json, bytecodePath);
Recommendations:

Validate bytecode, and select functions:

bytes32 expectedBytecodeHash = ©x[KNOWN_GOOD_HASH];

bytes32 actualHash = keccak256(bytecode);

require(actualHash == expectedBytecodeHash, "Bytecode hash mismatch - possible tampering");

string memory methodPath = ".['lib/curve-dao-contracts/contracts/VotingEscrow.vy'].method_identifiers";

string memory methodsJson = vm.parseJsonString(json, methodPath);

string memory constructorPath = ".['_init_ (address,string,string,string)']";

string memory actualSelector = vm.parseJsonString(methodsJson, constructorPath);

bytes4 expectedConstructor = bytes4(keccak256("__init__(address,string,string,string)"));

string memory expectedSelectorStr = vm.toString(expectedConstructor);

require(
keccak256(abi.encodePacked(actualSelector)) == keccak256(abi.encodePacked(expectedSelectorStr)),
"Constructor selector mismatch - artifact may be compromised"

)s

Action Taken:

Resolved at commit 41d44bd885e70dac1dfb99a159e1b4dad958e665



. < FIDESIUM Security Cost

!

Vulnerabilities

Reliance on Block Timestamp

Vulnerability severity:
Vulnerability probability:
AITVAirdropVesting contract relies on block.timestamp, which can be manipulated by miners.

e claimAndForfeitRemaining
e claimAndDepositTolLock
* rescueTokens

Recommendations:

¢ Use block numbers in addition to timestamps.
o If timestamps are necessary, use trusted external oracles.

Missing Deployment Contract Variable Validation

Vulnerability severity:

Vulnerability probability:

The DeployVotingEscrow.s.sol script presumes AITV_TOKEN_ ADDRESS is a valid contract
Due to error or malicious oversight, this could be set to an invalid or malicious value
Recommendations:

e Validate AITV_TOKEN_ADDRESS contains a contract
e Validate AITV_TOKEN_ ADDRESS has the expected abi

Missing Pausability

Vulnerability severity:
Vulnerability probability:

The AITVAirdropVesting contract does not implement pausability. This could limit the ability of the developer to
respond in an emergency.

Recommendations:
Use Pausable from OpenZeppelin
Action Taken:

Remediated through the existence of rescueTokens allowing the Owner to withdraw all assets from the contract,
pausing the contract in practice

This remains a low impact issue as manual token recovery requires slightly more thought (e.g addresses, token
amounts), and could be a slower response loop than outirght pausing



. < FIDESIUM Security Cost

.

Vulnerabilities

One Step Ownership Transfer

Vulnerability severity:
Vulnerability probability:

The AITVAirdropVesting contract apply the ownable pattern. It relies on a one step transferOwnership strategy.
This exposes these contracts to accidental ownership transfer to malicious or invalid wallets.

Recommendations:

Implement Ownable2Step to drive a two step ownership transfer. This will require applying Upgradeable
independently.

Missing Contract Validation

Vulnerability severity:
Vulnerability probability:
The AITVAirdropVesting.sol contract are presumes token and votingEscrow to be set correctly

These could be misconfigured, either through malice or accidental misconfiguration to point to incorrect contracts,
ranging in severity from rendering the protocol non functional, to actively and maliciously draining customers

Recommendations:

Validate contract abis and codesize in constructor

uint256 codeSize;
assembly {
tokenCodeSize := extcodesize(token)
¥
require(tokenCodeSize > @, "token is not a contract");
assembly {
votingEscrowCodeSize := extcodesize(votingEscrow)
}
require(votingEscrowCodeSize > @, "VotingEscrow is not a contract");
try IERC20(_token).totalSupply() returns (uint256) {
} catch {
revert InvalidTokenAddress();
¥
try IVotingEscrow(_votingEscrow).locked(address(this)) returns (int128, uint256) {
} catch {

revert NoVotingEscrowConfigured();




. < FIDESIUM Security Cost

.

Vulnerabilities

Missing Deployment Success Validation

Vulnerability severity:
Vulnerability probability:
The DeployVotingEscrow.s.sol script presumes deploy success

assembly { deployedAddress := create(®, add(fullBytecode, 0x20), mload(fullBytecode)) } return
deployedAddress;

Recommendations:

Validate deployment succeeded:

require(deployedAddress != address(@), "Deployment failed")



: 4 FIDESIUM Maximize Security Minimize Cost 0
l

Vulnerabilities Info

Gas Inefficiency: Unnecessary computation

Vulnerability severity: Info
Vulnerability probability: Info

The AITVAirdropVesting.claimAndForfeitRemaining function computes over constants

uint256 unlockedPercent =

IMMEDIATE UNLOCK BASIS POINTS + ((elapsed * (MAX BASIS POINTS - IMMEDIATE UNLOCK BASIS POINTS)) / VESTING DURATIC

Recommendations:

Precompute (or even hardcode) known constant math

uint256 public constant PRECOMPUTED RESULT = (MAX BASIS POINTS - IMMEDIATE UNLOCK BASIS POINTS)) / VESTING DURATI
uint8 public constant PRECOMPUTED RESULT = 10;

oK J >

Action Taken:

No explicit action was taken, however this is remediated by deploying on Base where gas is cheap.

Gas Inefficiency: uint256

Vulnerability severity: Info

Vulnerability probability: Info

The AITVAirdropVesting contract uses uint256
This is gas inefficient on every operation
Recommendations:

Validate your business logic and ensure the smallest possible uint is used



. < FIDESIUM Security Cost

!

Disclaimer

Disclaimer

This report is governed by the Fidesium terms and conditions.

This report does not constitute an endorsement or disapproval of any project or team, nor does it reflect the
economic value or potential of any related product or asset. It is not investment advice and should not be used as
the basis for investment decisions. Instead, this report provides an assessment intended to improve code quality
and mitigate risks inherent in cryptographic tokens and blockchain technology.

Fidesium does not guarantee the absence of bugs or vulnerabilities in the technology assessed, nor does it
comment on the business practices, models, or regulatory compliance of its creators. All services, reports, and
materials are provided "as is" and "as available," without warranties of any kind, including but not limited to
merchantability, fitness for a particular purpose, or non-infringement.

Cryptographic assets and blockchain technologies are novel and carry inherent technical risks, uncertainties, and
the possibility of unpredictable outcomes. Assessment results may contain inaccuracies or depend on third-party
systems, and reliance on them is solely at the Customer’s risk.

Fidesium assumes no liability for content inaccuracies, personal injuries, property damages, or losses related to
the use of its services, reports, or materials. Third-party components are provided "as is," and any warranties are
strictly between the Customer and the third-party provider.

These services and materials are intended solely for the Customer's use and benefit. No third party or their
representatives may claim rights to or rely on these services, reports, or materials under any circumstances.



